Homework 9

Week 10

December 21, 2024

- 1. Let $f : [a, b] \to [a, b]$ be differentiable and $|f(x)| \neq 1$ for all $x \in [a, b]$. Then f has a unique fixed point in [a, b].
- 2. Find the number of (distinct) real roots of the equation $e^{2x} + \cos x + x = 0$.
- 3. Let $f, g: I \to \mathbb{R}$ differentiable on I, and $a \in I$. Show that if f'(x) > g'(x) for all $x \in I$, and f(a) = g(a) then f(x) > g(x) for all x > a and f(x) < g(x) for all x < a.
- 4. Prove the following inequality

$$2\sin x + \tan x > 3x$$
, for all $x \in \left(0, \frac{\pi}{2}\right)$

- 5. Determine for the following functions:
 - Domain
 - global, local maximum and minimum of f.
 - increasing and decreasing intervals of f.
 - An approximate graph of the functions.
 - (a) $f(x) = x^x$
 - (b) $f(x) = \sin(x) + \cos(x) \ x \in [0, \pi]$
 - (c) $g(x) = x 2\arctan(x)$
 - (d) $f(x) = x^2 e^{-2x^2}$