Homework 8

Week 9

December 14, 2024

- 1. (25 points) Let $f_a(x) = \begin{cases} x^a & if \ x > 0 \\ 0 & if \ x \le 0 \end{cases}$
 - (a) For which values of a is f continuous at zero?
 - (b) For which values of a is f differentiable at zero? In this case, is the derivative function continuous?
 - (c) For which values of a is f twice-differentiable?
- 2. (25 points) Compute the derivate of the following functions:
 - (a) $f(x) = (\sin x)^{\cos x}$
 - (b) $f(x) = x^{(2x+1)^x}$
 - (c) $f(x) = \sin(\sin(\sin(\sin(x\cos(x)))))$
 - (d) $f(x) = \arcsin(\arctan(\arccos(x^2 + 1)))$
- 3. (25 points) Decide if the following sentences are true or false. Justify properly.
 - (a) If f + g is differentiable in x = a then f and g are differentiable in x = a.
 - (b) If f.g is differentiable in x = a then f and g are differentiable in x = a.
 - (c) If f is continuous in x = a, then |f| is continuous in x = a.
 - (d) There is a continuous function in \mathbb{R} that is not differentiable in a infinite set of points.
- 4. (25 points) Suppose that f and g are n-times differentiable functions, then the product fg is also n-times differentiable and its n-th derivative is given by the formula:

$$(fg)^n = \sum_{k=0}^n \binom{n}{k} f^{(n-k)} g^{(k)}$$