Homework 7

Week 8

December 7, 2024

- 1. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.
- 2. Decide, for which $n \in \mathbb{N}$, if the function $p(x) = x^n$ is strictly increasing. Justify.
- 3. Prove that if f is strictly increasing, then so is its inverse.
- 4. Prove that the function $\sinh x = \frac{e^x e^{-x}}{2}$ is bijective and compute the inverse.
- 5. Show that $f(x) = \frac{ax+b}{cx+d}$ is injective if and only if $ad bc \neq 0$. Determine the Imf and find f^{-1} .
- 6. Let be a > 0, we define the exponential function $a^x := e^{\ln(a)x}$. Prove using the definition of exponential functions that

(a)
$$a^{b+c} = a^b a^c$$

(b)
$$(a^b)^c = a^{bc}$$

- (c) $a^n = a.a. \cdots a$ for all $n \in \mathbb{N}$
- (d) $a^{\frac{1}{n}} = \sqrt[n]{a}$ for all $n \in \mathbb{N}$
- (e) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ for all $n \in \mathbb{N}, m \in \mathbb{Z}$
- (f) a^x is strictly increasing for a > 1 and strictly decreasing for 0 < a < 1.