Homework 6

Week 7

November 30, 2024

- 1. Prove using definition that
 - (a) $\lim_{x \to 2} 3x^2 1 = 11$ (b) $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ (c) $\lim_{x \to 0^+} \frac{1}{\sin x} = +\infty$
- 2. (Contraction Mapping Theorem). Let f be a function defined in all \mathbb{R} , and assume that there is a constant c such that 0 < c < 1 and $|f(x) f(y)| \le c|x y|$ for all $x, y \in \mathbb{R}$.
 - (a) Show that f is continuous on \mathbb{R} .
 - (b) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence $(y_1, f(y_1), f(f(y_1)), \cdots)$. In general, if $y_{n+1} = f(y_n)$, show that the resulting sequence (y_n) is a Cauchy sequence. Hence, let $y = \lim_{n \to \infty} y_n$.
 - (c) Prove that y is a fixed point, that is f(y) = y.

3. Consider the function
$$f(x) = \begin{cases} 5a^2x - 9 \text{ if } x > 3\\ 9\sqrt{a} \text{ if } x = 3\\ \frac{2x^2a}{3} \text{ if } x < 3 \end{cases}$$

Determine all values of a such that $\lim_{x\to 3} f(x)$ exists.

4. Compute the following limits

(a)
$$\lim_{x \to -3} \frac{x^2 + 6x + 9}{\sin(x^2 - 9)}$$

(b) $\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}, n, m \in \mathbb{N}.$
(c) $\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x} + \sqrt{x}}}{\sqrt{x + 1}}$

- 5. Decide if the following sentences are True or False
 - (a) If |f| is continuous in x_0 then f is continuous in x_0 .
 - (b) If f(x) and $g(x) \neq 0$ for all x and $f^2(x) = g^2(x)$, then f = g or f = -g.
 - (c) There is a function f(x) which is not continuous at 0 but $f(x) + \frac{1}{f(x)}$ is continuous at 0.