Homework 11

Week 12

January 4, 2025

- 1. (20 points) By considering appropriate Taylor polynomials, evaluate the limits below.
 - (a) $\lim_{x \to 0} \frac{\ln(1+x^2)}{x \sin(x)}$ (b) $\lim_{x \to 0} \frac{\sin^3(x)}{x(1-\cos(x))}$
 - (c) $\lim_{x \to \infty} \sqrt{1 + x + x^2} x$ Hint: Consider a change of variable.
- 2. (20 points) Suppose a_i , b_i are coefficients of Taylor polynomials at a of f and g respectively. Find the coefficients c_i of Taylor polynomials at a of the function h(x) = f(x)g(x).
- 3. (20 points) Show that for all x > 0, the following inequality holds

$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$$

- 4. (20 points) Compute the Taylor polynomial of order N at x = 0 for the function $f(x) = \frac{1}{1+x}$.
- 5. (20 points) Using exercise 4, compute the Taylor polynomials of order N at x = 0 of the following functions:

(a)
$$\frac{1}{x-1}$$

(b) $\frac{1}{(x-1)^2}$
(c) $\frac{(2x+3)}{(x+1)(x+3)}$
Hint: Write $\frac{(2x+3)}{(x+1)(x+3)}$ as a sum of two rational expressions.