9
December 21, 2024
-
Let \(f:[a,b]\rightarrow[a,b]\) be differentiable and \(|f^{\prime}(x)|\neq1\) for all \(x\in[a,b]\) . Then \(f\) has a unique fixed point in \([a,b]\) .
Proof
We need to prove there exists unique \(c\in[a,b]\) such that \(f(c)=c\), then \(g(x)=f(x)-x\) exists only one root.
Existence: Since \(g(a)=f(a)-a\geq 0\) and \(g(b)=f(b)-b\leq 0\)
By intermedia value theorem, there exists \(c\in[a,b]\) such that \(g(c)=f(c)-c=0\), then \(f(c)=c\)
Uniqueness: Suppose there exists two different such \(c\)
Then \(g(c_1)=f(c_1)-c_1=0=g(c_2)=f(c_2)-c_2\).
Then by mean value theorem, there exists \(\tilde{c}\in\left(c_1,c_2\right):f^{\prime}\left(\tilde{c{}}\right)=\frac{f\left(c_2\right)-f\left(c_1\right)}{c_2-c_1}=\frac{c_2-c_1}{c_2-c_1}=1\)
Contradiction!
Thus there is a unique fixed point in \([a,b]\) .
-
Find the number of (distinct) real roots of the equation \(e^{2x}+\cos x+x=0\) .
Consider \(f(x)=e^{2x}+\cos x+x\), then \(f^{\prime}(x)=e^{2x}\cdot2-\sin x+1\)
Since \(1-\sin x\geq 0\) and \(2e^{2x}>0\), then \(f'(x)>0\), then \(f(x)\) is strictly increasing
Then the equation only has at most one root
Since \(f(-100)<0\) and \(f(100)>0\), then by Bolzano Theorem there exists one root of \(f(x)\)
Thus the number of distinct real roots of the equation is one
-
Let \(f,g:I\rightarrow\mathbb{R}\) differentiable on \(I\) , and \(a\in I\) . Show that if \(f^{\prime}(x)>g^{\prime}(x)\) for all \(x\in I\) , and \(f(a)=g(a)\), then \(f\!\left(x\right)>g\!\left(x\right)\) for all \(x>a\) and \(f\!\left(x\right)<g\!\left(x\right)\) for all \(x<a\) .
Consider \(h(x)=f(x)-g(x)\). Since \(f'(x)>g'(x)\), then \(f'(x)-g'(x)>0\Rightarrow h'(x)>0\), then \(h\) is strictly increasing.
Also since \(f(a)=g(a)\), then \(f(a)-g(a)=h(a)=0\)
Then we need to prove \(f\!\left(x\right)>g\!\left(x\right)\) for all \(x>a\) and \(f\!\left(x\right)<g\!\left(x\right)\) for all \(x<a\)
Which means we need to prove \(h(x)>0\) for all \(x>a\) and \(h(x)<0\) for all \(x<a\)
Since \(h(a)=0\) and \(h\) is strictly increasing, then \(h(x)>0\) for all \(x>a\) and \(h(x)<0\) for all \(x<a\) automatically.
Then \(f\!\left(x\right)>g\!\left(x\right)\) for all \(x>a\) and \(f\!\left(x\right)<g\!\left(x\right)\) for all \(x<a\) .
-
Prove the following inequality \(2\sin x+\tan x>3x,{\mathrm{~for~all~}}x\in\left(0,{\frac{\pi}{2}}\right)\)
Consider \(f(x)=2\sin x+\tan x-3x\) for all \(x\in\left(0,{\frac{\pi}{2}}\right)\). Then \(f^{\prime}(x)=2\cos x+\frac{1}{\cos^2x}-3\).
Then consider \(f^{\prime}(x)=0\Rightarrow2\cos x+\frac{1}{\cos^2x}-3=0\Rightarrow2\cos^3x-3\cos^2x+1=0\Rightarrow\cos x=1,-0.5\)
Since \(x\in\left(0,{\frac{\pi}{2}}\right)\), then there isn't such \(x\) such that \(f'(x)=0\).
Since \(f^{\prime}(\frac{\pi}{4})=\sqrt2+2-3>0\), thus the function is strictly increasing when \(x\in\left(0,{\frac{\pi}{2}}\right)\)
Since \(f(0)=2+1-3=0\), then \(f(x)>0\) for all \(x\in\left(0,{\frac{\pi}{2}}\right)\)
Thus \(2\sin x+\tan x>3x,{\mathrm{~for~all~}}x\in\left(0,{\frac{\pi}{2}}\right)\)
-
Determine for the following functions:
• Domain
• global, local maximum and minimum of \(f\) .
• increasing and decreasing intervals of \(f\) .
• An approximate graph of the functions.
-
\(f(x)=x^{x}\)
• Domain \(\left(0,+\infty\right)\)
• increasing and decreasing intervals of \(f\)
\(f^{\prime}(x)=\left(e^{\ln x^{x}}\right)^{\prime}=\left(e^{x\ln x}\right)^{\prime}=e^{x\ln x}\cdot\left(x\ln x\right)^{\prime}=e^{x\ln x}\cdot\left(\ln x+x\frac{1}{x}\right)=e^{x\ln x}\cdot\left(\ln x+1\right)\)
Then \(f^{\prime}(x)=0=e^{x\ln x}\cdot\left(\ln x+1\right)\Rightarrow\ln x+1=0\Rightarrow x=\frac{1}{e}\)
Since \(f'(x)>0\) when \(x>\frac1e\) and \(f'(x)<0\) when \(0<x<\frac1e\), then \(f(x)\) is strictly increasing in \((\frac1e,+\infty)\) and strictly decreasing in \((0,\frac1e)\)
• global, local maximum and minimum of \(f\)
Then from above we know \(x=\frac1e\) is a local minimum point, then \(f(\frac{1}{e})=\left(\frac{1}{e}\right)^{\frac1e}<1\) is the local minimum
Also since \(\lim_{x\to\infty}x^{x}=\lim_{x\to\infty}e^{x\ln x}=\infty\) and \(\lim_{x\to0}x^{x}=\lim_{x\to0}e^{x\ln x}=e^0=1\), then \(f(\frac{1}{e})=\left(\frac{1}{e}\right)^{\frac1e}<1\) is the global and local minimum
Then there is no local maximum, and the global maximum doesn't exists.
• An approximate graph of the functions.
2. \(f(x)=\sin(x)+\cos(x)\ x\in[0,\pi]\)
• Domain \(x\in[0,\pi]\)
• increasing and decreasing intervals of \(f\) .
Since \(f(x)=\sqrt2\sin\left(x+\frac{\pi}{4}\right)\) and \(x+\frac{\pi}{4}\in [\frac{\pi}{4},\frac{5\pi}{4}]\), then \(f(x)\) is increasing in \((0,\frac{\pi}{4})\) and decreasing in \((\frac{\pi}{4},\pi)\)
• global, local maximum and minimum of \(f\) .
\(f(\frac{\pi}{4})=\sqrt2\sin\left(\frac{\pi}{2}\right)=\sqrt2\) which is the local and global maximum since \(f^{\prime}(\frac{\pi}{4})=\sqrt2\cos\left(x+\frac{\pi}{4}\right)=0\)
Since \(f(0)=1\) and \(f(\pi)=-1\) , then the global and local minimum is \(-1\)
• An approximate graph of the functions.
3. \(g(x)=x-2\arctan(x)\)
• Domain \(\R\)
• increasing and decreasing intervals of \(f\) .
\(g'(x)=1-\frac{2}{1+x^2}\), then \(g^{\prime}(x)=0\Rightarrow1+x^2=2\Rightarrow x=\pm1\)
Then \(x<-1\), \(g^{\prime}(x)>0\) and \(x>-1\), \(g'(x)<0\), \(x<1\), \(g'(x)<0\) and \(x>1\), \(g'(x)>0\)
Thus \(x\in (-\infty,-1)\) is increasing interval and \(x\in (-1,1)\) is decreasing interval and \(x\in (1,\infty)\) is increasing interval
• global, local maximum and minimum of \(f\) .
\(f(-1)=-1-2\arctan(-1)\) is the local maximum and \(f(1)=1-2\arctan(1)\) is the local minimum
Since \(\lim_{x\to\infty}\left(x-2\arctan(x)\right)=\infty\) and \(\lim_{x\to-\infty}\left(x-2\arctan(x)\right)=-\infty\)
Then there is no global maximum and minimum
• An approximate graph of the functions.
4. \(f(x)=x^2e^{−2x^2}\)
• Domain \(\R\)
• increasing and decreasing intervals of \(f\) ./
Since \(f^{\prime}(x)=2x\cdot e^{−2x^2}+x^2\cdot e^{−2x^2}\cdot-4x=0\), we have \(2x-4x^3=0\Rightarrow x=0,\pm \frac{\sqrt2}{2}\)
\((-\infty,-\frac{\sqrt2}{2})\) \((-\frac{\sqrt2}{2},0)\) \((0,\frac{\sqrt2}{2})\) \((\frac{\sqrt2}{2},+\infty)\) \(f'(x)\) \(>0\) \(<0\) \(>0\) \(<0\) \(f(x)\) increasing decreasing increasing decreasing • global, local maximum and minimum of \(f\) .
Then \(f(-\frac{\sqrt2}{2})=f(-\frac{\sqrt2}{2})\) is the global and local maximum since \(\lim_{x\to\infty}=0,\lim_{x\to-\infty}=0\)
And the global and local minimum is \(f(0)=0\)
• An approximate graph of the functions.
-