Skip to content

Mid

SLCM_Exam_Notebook_999027873_202401-104195-5_Datestamp_2024_12_11.pdf

4(c) i have no problem of correction of 4(c). Here is just my correction to my mistake

\(a_{n}=\left(-1\right)^{n}\frac{1}{\sqrt{n}}\)

\(\sum|a_{n+1}-a_{n}|=\sum\left|\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n}}\right|=\sum\left|\frac{\sqrt{n}+\sqrt{n+1}}{\sqrt{n+1}\sqrt{n}}\right|=\sum\frac{1}{\sqrt{n+1}\sqrt{n}\left(\sqrt{n+1}-\sqrt{n}\right)}=\sum\frac{1}{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}\)

And \(\sum\frac{1}{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}\geq\sum\frac{1}{\left(n+1\right)\sqrt{n}-n\sqrt{n}}=\sum\frac{1}{\sqrt{n}}\)

Or

4(c) \(a_{n}=\left(-1\right)^{n}\frac{1}{n}\)

\(\sum|a_{n+1}-a_{n}|=\sum\left|\frac{1}{n+1}+\frac{1}{n}\right|=\sum\frac{1}{n+1}+\sum\frac{1}{n}\) which is divergent


3(b) 6points i have problem of correction of 3(b).

Here i don't understand why it is not clear enough. At the last part of proof, since \(-\epsilon_1 - \epsilon_2 < 0\), then \(-\epsilon_1 - \epsilon_2\) is a negative number. And we know \(a-b>-\epsilon_1-\epsilon_2\), thus \(a-b>\) negative number, thus it is greater or equal to \(0\). I think it's ok

Here is the original proof in exam without modification

Since \(a_n = \sup\{x_k: k \leq n\}\), then \(a_n \geq x_k\) for \(k \leq n\).
Since \(b_n = \inf\{x_k: k \geq n\}\), then \(b_n \leq x_k\) for \(k \geq n\).
Thus \(b_n \leq x_k \leq a_n\) for \(b_n\) such that \(k \geq n\).
Thus \(a_n \geq b_n\).\(\forall n\)

Since \(a = \lim a_n\), then \(|a_n - a| < \epsilon_1\) (\(\forall \epsilon_1 > 0\), \(\exists N\))
Since \(b = \lim b_n\), then \(|b_n - b| < \epsilon_2\).(\(\forall\epsilon_2>0\), \(\exists N\)))

Then \(-\epsilon_1 + a < a_n < \epsilon_1 + a\), and \(-\epsilon_2 + b < b_n < \epsilon_2 + b\).

Also since \(a_n \geq b_n\), then \(a+\varepsilon_1\geq a_{n}\geq b_{n}\geq b-\epsilon_2\).
Thus we have \(a+\epsilon_1\geq b-\epsilon_2\Rightarrow a-b>-\epsilon_1-\epsilon_2\).
Since \(\epsilon_1, \epsilon_2 > 0\), then \(-\epsilon_1 - \epsilon_2 < 0\).

Then \(a - b\) is bigger than a negative number.
Then \(a - b \geq 0 \Rightarrow a \geq b\).


3(c) total 4 points i have problem of correction of 3(c).

Proof

\(\Leftarrow\)) We know If \(a = b \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n\), then \(\limsup_{n\to\infty}\{x_{k}:k\geq n\}=\liminf_{n\to\infty}\{x_{k}:k\geq n\}\)(*)

Suppose \((x_n)\) is not convergent, then \(\exists\varepsilon>0\,,\forall n>n_0:|x_{n}-L|\geq\varepsilon\).

Then \(x_{n}\geq L+\varepsilon\quad\text{or}\quad x_{n}\leq L-\varepsilon\quad\)\(\forall n>n_0\)

Then \(\inf\{x_{n}:n\geq n_0\}\geq L+\varepsilon\quad\text{or}\quad\sup\{x_{n}:n\geq n_0\}\leq L-\varepsilon\)

\(\Rightarrow\inf\{x_{k}:k\geq n\}\geq L+\varepsilon\quad\text{or}\quad\sup\{x_{k}:k\geq n\}\leq L-\varepsilon\)

\(\Rightarrow\liminf_{n\to\infty}\{x_{k}:k\geq n\}\geq L+\varepsilon\quad\text{or}\quad\limsup_{n\to\infty}\{x_{k}:k\geq n\}\leq L-\varepsilon\)

Since(*) we know \(L + \varepsilon \leq L - \varepsilon \Rightarrow 2\varepsilon \leq 0\), contradiction!
Thus \((x_n)\) is convergent.

Above is one direction of original proof in exam, i think it is clear, but the grader says it is not clear enough.

\(\Rightarrow\)) Suppose \(a \neq b\), since \(a \geq b \Rightarrow a > b\).
Then \(\lim_{n\to\infty}a_{n}>\lim_{n\to\infty}b_{n}\Rightarrow\limsup_{n\to\infty}\{x_{k}:k\geq n\}>\liminf_{n\to\infty}\{x_{k}:k\geq n\}\).

\(\Rightarrow\exists x_{k}\,:k\geq n\,\text{such that}\,\inf\{x_{k}:k\geq n\}<x_{k}<\sup\{x_{k}:k\geq n\}\) which means there is always \(x_{k}\,(k\geq n)\) when \(n \to \infty\) in the interval.

And \(\inf\{x_{k}:k\geq n\},\sup\{x_{k}:k\geq n\}\) also in the set.
Thus when \(n \to \infty\), there always at least three elements satisfying condition.
Thus there is no limit. Contradiction!

Finally, we complete proof.

  1. (20 points) Let \(F : \mathbb{R} \to \mathbb{R}\) be the function defined by

    \[ f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases} \]

    Prove that \(\lim_{x \to 0} f(x) = 0\) and that \(\lim_{x \to a} f(x)\) does not exist for all \(a \neq 0\).

Proof

To prove \(\lim_{x \to a} f(x)\) does not exist for all \(a \neq 0\). Use contradiction. Suppose \(\lim_{x \to a} f(x)\) exists for some \(a\neq0\)

Then \(\lim_{x\to a}f(x)=l\)

Thus \(\forall\varepsilon>0,\exists\delta>0:0<|x-a|<\delta\Rightarrow|f(x)-l|<\varepsilon\).
Then \(0<\left|x-a\right|<\delta\Rightarrow l-\varepsilon<f(x)<l+\varepsilon\).

By density, we can take \(x=q\in \mathbb{Q}\) which is rational number, then \(f(x)=x\Rightarrow l-\varepsilon<x<l+\varepsilon\)

We also can take \(x=i\in \mathbb{I}\) which is irrational number, then \(f(x)=0\Rightarrow l-\varepsilon<0<l+\varepsilon\)

\(|x|<2\varepsilon\)

or take a rational subsequence and irrational subsequence

since the limit of function equal to the limit of sequence equal to the limit of subsequence

image

image