Introduction to Computer Science Tutorial 12: Time complexity.

- 1. Order the following complexity bounds in increasing order:
 - A. O(n) D. $O(n^2)$ G. $O(2^n)$

 B. O(logn) E. $O(n^4)$ H. $O(n^n)$

 C. O(n*logn) F. O(n!)
- 2. Calculate the time bound (in big O notation) of the next time functions:

A.
$$T(n) = n(n + 1)$$

B. $T(n) = \sum_{i=1}^{n} c$
C. $T(n) = n^* (n + \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} c)$
E. $T(n) = n^* (n(logn + n))$

- 3. Calculate the time function (T(n)) for the programming exercises present in the 10^{th} and 11^{th} tutorials and calculate their respective time bounds. You can improve the time efficiency of your solutions? How?
- 4. Define and implement a function int search(int seq[], int lower, int higher, int elem) that search an element inside of a sequence. This function must have a constant time complexity if elem is in the first or last position of seq.