
Introduction to Computer Science – Winter 2022 
Lecture 12

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 12

Today's topic

Time complexity

2

Time complexity
● Consider an algorithm that takes as input an array of size n

● We express running time of the algorithm as a function of n

● short sequences are easier to sort than long ones

● Generally, we seek upper bounds on the running time

● Worst-case:

● T(n) = maximum time of the algorithm on any input of size n

● Average-case (not to be covered in this course):

● T(n) = expected time of algorithm over all inputs of size n

3

Machine-independent time

What is selectionSort()’s worst-case time, in seconds?

• It depends on the characteristics of our computer

Idea:

● Ignore machine-dependent constants.

● Do not talk about "how many seconds", talk about "how many steps" or "how many
operations".

● Look at growth of T(n) as n → ∞ .

This is asymptotic analysis.

4

Worst Case Asymptotic Analysis

For the algorithm to be analyzed,

• Determine what is the “size” of the input

• Determine which are the relevant operations/steps

• Analyze the worst case configuration among all possible concrete inputs of arbitrary
size n (worst case is that which would exercise more times the relevant operations)

• Express the number of relevant operations in the worst case, as a function T on the
input size n

• Determine the asymptotic growth of T

5

Worst Case Asymptotic Analysis

6

void insertionSort(int array[], int size) {

 for (int i = 1; i < size; i++) {

 int j = i;

 while (j > 0 && array[j-1] > array[j]) {

 int aux = array[j];

 array[j] = array[j-1];

 array[j-1] = aux;

 }

 }

}

Worst Case Asymptotic Analysis

7

void selectionSort(int array[], int size) {

 for (int i = 0; i < size-1; i++) {

 int min_index = i;

 for (int j = i+1; j < size; j++) {

 if (array[j] < array[min_index]) {

 min_index = j;

 }

 }

 int aux = array[i];

 array[i] = array[min_index];

 array[min_index] = aux;

 }

}

Θ-notation (big theta)

Θ(g(n)) = { f(n) : there exist positive constants c1, c2, n0 such that

 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n) for all n ≥ n0 }

"f is bounded both above and below by g asymptotically "

In practice:

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

8

Asymptotic performance

When n gets large enough, a Θ(n2) algorithm is always better than a Θ(n3) algorithm.

● Asymptotic analysis is a useful tool

● It helps us compare the efficiency
of alternative algorithms for a given
problem.

● It can also allow us to estimate the
worst case running time of
algorithms for larger inputs, from
the actual running times of smaller
inputs

9

Difference between big-theta Θ and big-oh O

● We are usually interested in searching for tight bounds.

● Θ-notation refers to a tight bound:

● 3n3 + 90n2 – 5n + 6046 belongs to Θ(n3)

● There is another notation, O-notation, which refers to an upper bound:

● 3n3 + 90n2 – 5n + 6046 belongs to O(n10) // true but not very informative

● 3n3 + 90n2 – 5n + 6046 belongs to O(n5) // better but not ideal

● 3n3 + 90n2 – 5n + 6046 belongs to O(n3) // the tightest possible
10

Difference between big-theta Θ and big-oh O

11

Big-theta Θ vs. big-oh O, worst-case vs. all cases

● We often use O-notation to describe the
running time of an algorithm by a more
immediate upper bound

● For example, the doubly nested loop
structure of selectionSort()
immediately yields an O(n2) upper bound on
the worst-case running time.

● The O-notation describes an upper bound,
so when we use it to bound the worst-case
running time of an algorithm, we have a
bound on the running time of the algorithm
on every input.

● Thus, the O(n2) bound on worst-case
running time of selectionSort() also
applies to its running time on every
input.

● However, a Θ(n2) bound on the worst-
case running time, does not imply a
Θ(n2) bound on the running time on
every input.

● For instance, insertionSort() has an
Θ(n2) bound for the worst-case, but if the
array is already sorted, it runs in linear
time

12

Complexity naming

● O(1): constant time

● O(log n): logarithmic time

● O(n): linear time

● O(n2): quadratic time

● O(n3): cubic time

● O(2n): exponential time

13

Accidentally quadratic code

● Loop condition does a call to strlen(), which is O(n) time

● In O(n) time:

14

void toLower(char s[]) {

 for (int i = 0; i < strlen(s); i++) {

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A';

 }

 }

}

int strlen(const char s[]) {

 int len = 0;

 while (s[len] != '\0') {

 len++;

 }

 return len;

}

void toLower(char s[]) {

 for (int i = 0; s[i] != '\0'; i++) {

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A';

 }

 }

}

void toLower(char s[]) {

 int n = strlen(s);

 for (int i = 0; i < n; i++) {

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A';

 }

 }

}

Algorithms review with time complexity

● Summing elements of a sequence: O(n)

● Fisher-Yates Shuffle: O(n)

● Insertion Sort: O(n2)

● Selection Sort: O(n2)

● Merge: O(n + m) (n and m are the lengths of the sequences to merge)

● Linear search in a sequence: O(n)

● Binary search in sorted array: O(log n)

15

Quadratic hasDuplicate()

Design a program hasDuplicate(int a[], int n), that runs in O(n2) time
and returns true if the array contains a duplicated value (two or more times), false
otherwise.

For instance, {1,2,3,4,5,6} has no duplicate, {1,2,3,4,5,2} has duplicate.

16

Cubic hasTriplicate()

Design a program hasTriplicate(int a[], int n), that runs in O(n3)
time and returns true if the array contains a value that appears thrice (or more
times), 0 otherwise.

For instance:

● {1,2,3,4,5,6} has no triplicate

● {1,2,3,4,5,2} has no triplicate

● {1,2,3,2,5,2} has a triplicate

17

Merge()

18

Using merge() to create a Sorting Algorithm
Idea of merge sort:

have array a[] as input

merge pairs of elements in array:

a[0] a[1] => get a[0..1] sorted 
a[2] a[3] => get a[2..3] sorted 
...

then merge groups of 4:

a[0..1] a[2..3]=> get a[0..3] sorted 
... 
then groups of 8:... 
.... 
then groups of n/2 => a[] sorted

19

mergeSort()

20

void mergeSort(int array[], int n) {

 for (int curr_size = 1; curr_size < n; curr_size = 2 * curr_size) {

 for (int left_start = 0; left_start < n-1; left_start += 2*curr_size) {

 int mid = min(left_start + curr_size - 1, n-1);

 int right_end = min(left_start + 2*curr_size - 1, n-1);

 merge(arr, left_start, mid, right_end);

 }

 }

}

Time Complexity of mergeSort()

● For each value of curr_size (outer for loop):

● sum of all merge() calls on subarrays
whose total size is n: O(n)

● Outer loop repeats (log n) times

● Total time: O(n log n)

21

void mergeSort(int array[], int n) {

 int left_start;

 for (int curr_size = 1; curr_size < n; curr_size = 2 * curr_size) {

 for (int left_start = 0; left_start < n-1; left_start += 2*curr_size) {

 int mid = min(left_start + curr_size - 1, n-1);

 int right_end = min(left_start + 2*curr_size - 1, n-1);

 merge(arr, left_start, mid, right_end);

 }

 }

}

Recursive mergeSort()

22

void mergeSort(int arr[], int left, int right) {

 if (left < right) {

 int mid = left + (right - left) / 2;

 mergeSort(arr, left, mid);

 mergeSort(arr, mid + 1, right);

 merge(arr, left, mid, right);

 }

}

Recursive
mergeSort() (cont.)

23

void merge(int arr[], int left, int mid, int right) {

 int i, j, k;

 int n1 = mid - left + 1;

 int n2 = right - mid;

 int leftArr[n1], rightArr[n2];

 for (i = 0; i < n1; i++)

 leftArr[i] = arr[left + i];

 for (j = 0; j < n2; j++)

 rightArr[j] = arr[mid + 1 + j];

 i = 0;

 j = 0;

 k = left;

 while (i < n1 && j < n2) {

 if (leftArr[i] <= rightArr[j]) {

 arr[k] = leftArr[i];

 i++;

 }

 else {

 arr[k] = rightArr[j];

 j++;

 }

 k++;

 }

 while (i < n1) {

 arr[k] = leftArr[i];

 i++;

 k++;

 }

 while (j < n2) {

 arr[k] = rightArr[j];

 j++;

 k++;

 }

}

Final Remarks

● O(n log n) is the optimal time complexity for sorting sequences of size n

● merge sort is not the only sorting algorithm with that running time

● Asymptotic analysis is a first approach to solving problems efficiently

● Later on you will see many low-level factors that also impact efficiency

● Time complexity is an important topic to be aware of when programming

● Careful with accidentally creating O(n2) code that could be O(n), or k*T(n) code
that could be T(n).

24

