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Today's topic

Time complexity
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Time complexity
● Consider an algorithm that takes as input an array of size n


● We express running time of the algorithm as a function of n


● short sequences are easier to sort than long ones


● Generally, we seek upper bounds on the running time


● Worst-case:


● T(n) = maximum time of the algorithm on any input of size n


● Average-case (not to be covered in this course):


● T(n) = expected time of algorithm over all inputs of size n
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Machine-independent time

What is selectionSort()’s worst-case time, in seconds?


• It depends on the characteristics of our computer


Idea:


● Ignore machine-dependent constants.


● Do not talk about "how many seconds", talk about "how many steps" or "how many 
operations".


● Look at growth of T(n) as n → ∞ .


This is asymptotic analysis.
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Worst Case Asymptotic Analysis

For the algorithm to be analyzed, 


• Determine what is the “size” of the input


• Determine which are the relevant operations/steps


• Analyze the worst case configuration among all possible concrete inputs of arbitrary 
size n (worst case is that which would exercise more times the relevant operations)


• Express the number of relevant operations in the worst case, as a function T on the 
input size n


• Determine the asymptotic growth of T
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Worst Case Asymptotic Analysis
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void insertionSort(int array[], int size) {

    for (int i = 1; i < size; i++) {

        int j = i;

        while (j > 0 && array[j-1] > array[j]) {

            int aux = array[j];

            array[j] = array[j-1];

            array[j-1] = aux;

        }

    }

}



Worst Case Asymptotic Analysis
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void selectionSort(int array[], int size) {

    for (int i = 0; i < size-1; i++) {

        int min_index = i;

        for (int j = i+1; j < size; j++) {

            if (array[j] < array[min_index]) {

                min_index = j;

            }

        }

        int aux = array[i];

        array[i] = array[min_index];

        array[min_index] = aux;

    }

}



Θ-notation (big theta)

Θ(g(n)) = { f(n) : there exist positive constants c1, c2, n0 such that 


                         0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n) for all n ≥ n0 }


"f is bounded both above and below by g asymptotically "


 


In practice:


• Drop low-order terms; ignore leading constants.


• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)
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Asymptotic performance

When n gets large enough, a Θ(n2) algorithm is always better than a Θ(n3) algorithm.

● Asymptotic analysis is a useful tool


● It helps us compare the efficiency 
of alternative algorithms for a given 
problem.

● It can also allow us to estimate the 
worst case running time of 
algorithms for larger inputs, from 
the actual running times of smaller 
inputs
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Difference between big-theta Θ and big-oh O

● We are usually interested in searching for tight bounds.


● Θ-notation refers to a tight bound:


● 3n3 + 90n2 – 5n + 6046 belongs to Θ(n3)


● There is another notation, O-notation, which refers to an upper bound:


● 3n3 + 90n2 – 5n + 6046 belongs to O(n10)    // true but not very informative


● 3n3 + 90n2 – 5n + 6046 belongs to O(n5)    // better but not ideal


● 3n3 + 90n2 – 5n + 6046 belongs to O(n3)    // the tightest possible
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Difference between big-theta Θ and big-oh O
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Big-theta Θ vs. big-oh O, worst-case vs. all cases

● We often use O-notation to describe the 
running time of an algorithm by a more 
immediate upper bound


● For example, the doubly nested loop 
structure of selectionSort() 
immediately yields an O(n2) upper bound on 
the worst-case running time.


● The O-notation describes an upper bound, 
so when we use it to bound the worst-case 
running time of an algorithm, we have a 
bound on the running time of the algorithm 
on every input.

● Thus, the O(n2) bound on worst-case 
running time of selectionSort() also 
applies to its running time on every 
input.

● However, a Θ(n2) bound on the worst-
case running time, does not imply a 
Θ(n2) bound on the running time on 
every input.

● For instance, insertionSort() has an 
Θ(n2) bound for the worst-case, but if the 
array is already sorted, it runs in linear 
time
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Complexity naming

● O(1): constant time


● O(log n): logarithmic time


● O(n): linear time


● O(n2): quadratic time


● O(n3): cubic time


● O(2n): exponential time
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Accidentally quadratic code

● Loop condition does a call to strlen(), which is O(n) time

● In O(n) time:

14

void toLower(char s[]) {

    for (int i = 0; i < strlen(s); i++) {

        if (s[i] >= 'A' && s[i] <= 'Z') {

            s[i] += 'a' - 'A';

        }

    }

}

int strlen(const char s[]) {

    int len = 0;

    while (s[len] != '\0') {

        len++;

    }

    return len;

}

void toLower(char s[]) {

    for (int i = 0; s[i] != '\0'; i++) {

        if (s[i] >= 'A' && s[i] <= 'Z') {

            s[i] += 'a' - 'A';

        }

    }

}

void toLower(char s[]) {

    int n = strlen(s);

    for (int i = 0; i < n; i++) {

        if (s[i] >= 'A' && s[i] <= 'Z') {

            s[i] += 'a' - 'A';

        }

    }

}



Algorithms review with time complexity

● Summing elements of a sequence: O(n)


● Fisher-Yates Shuffle: O(n)


● Insertion Sort: O(n2)


● Selection Sort: O(n2)


● Merge: O(n + m) (n and m are the lengths of the sequences to merge)


● Linear search in a sequence: O(n)


● Binary search in sorted array: O(log n)
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Quadratic hasDuplicate()

Design a program hasDuplicate(int a[], int n), that runs in O(n2) time 
and returns true if the array contains a duplicated value (two or more times), false 
otherwise.


For instance, {1,2,3,4,5,6} has no duplicate, {1,2,3,4,5,2} has duplicate.

16



Cubic hasTriplicate()

Design a program hasTriplicate(int a[], int n), that runs in O(n3) 
time and returns true if the array contains a value that appears thrice (or more 
times), 0 otherwise.


For instance:


● {1,2,3,4,5,6} has no triplicate


● {1,2,3,4,5,2} has no triplicate


● {1,2,3,2,5,2} has a triplicate
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Merge()

18



Using merge() to create a Sorting Algorithm
Idea of merge sort:


have array a[] as input


merge pairs of elements in array:


a[0] a[1] => get a[0..1] sorted 
a[2] a[3] => get a[2..3] sorted 
...


then merge groups of 4:


a[0..1] a[2..3]=> get a[0..3] sorted 
... 
then groups of 8:... 
.... 
then groups of n/2 => a[] sorted
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mergeSort()
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void mergeSort(int array[], int n) {

  for (int curr_size = 1; curr_size < n; curr_size = 2 * curr_size) {

       for (int left_start = 0; left_start < n-1; left_start += 2*curr_size) {

           int mid = min(left_start + curr_size - 1, n-1);

            int right_end = min(left_start + 2*curr_size - 1, n-1);

           merge(arr, left_start, mid, right_end);

       }

   }

}



Time Complexity of mergeSort()

● For each value of curr_size (outer for loop):


● sum of all merge() calls on subarrays 
whose total size is n: O(n)


● Outer loop repeats (log n) times


● Total time: O(n log n)
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void mergeSort(int array[], int n) {

   int left_start; 

   for (int curr_size = 1; curr_size < n; curr_size = 2 * curr_size) {

       for (int left_start = 0; left_start < n-1; left_start += 2*curr_size) {

           int mid = min(left_start + curr_size - 1, n-1);

            int right_end = min(left_start + 2*curr_size - 1, n-1);

           merge(arr, left_start, mid, right_end);

       }

   }

}



Recursive mergeSort()

22

void mergeSort(int arr[], int left, int right) {

    if (left < right) {

        int mid = left + (right - left) / 2;


        mergeSort(arr, left, mid);

        mergeSort(arr, mid + 1, right);


        merge(arr, left, mid, right);

    }

}



Recursive 
mergeSort() (cont.)

23

void merge(int arr[], int left, int mid, int right) {

    int i, j, k;

    int n1 = mid - left + 1;

    int n2 = right - mid;

    int leftArr[n1], rightArr[n2];

    for (i = 0; i < n1; i++)

        leftArr[i] = arr[left + i];

    for (j = 0; j < n2; j++)

        rightArr[j] = arr[mid + 1 + j];

    i = 0;

    j = 0;

    k = left;

    while (i < n1 && j < n2) {

        if (leftArr[i] <= rightArr[j]) {

            arr[k] = leftArr[i];

            i++;

        }

        else {

            arr[k] = rightArr[j];

            j++;

        }

        k++;

    }

    while (i < n1) {

        arr[k] = leftArr[i];

        i++;

        k++;

    }

    while (j < n2) {

        arr[k] = rightArr[j];

        j++;

        k++;

    }

}



Final Remarks

● O(n log n) is the optimal time complexity for sorting sequences of size n


● merge sort is not the only sorting algorithm with that running time


● Asymptotic analysis is a first approach to solving problems efficiently


● Later on you will see many low-level factors that also impact efficiency


● Time complexity is an important topic to be aware of when programming


● Careful with accidentally creating O(n2) code that could be O(n), or k*T(n) code 
that could be T(n).

24


