
Introduction to Computer Science – Winter 2022 
Lecture 9

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 9

Today

● Functions

● The return statement

● Function prototypes

● Call-by-value

2

The big picture

● Problem decomposition: taking a problem and breaking it into small, manageable
pieces is critical to writing large programs.

● Imperative programming languages typically provide subroutines (in C,
functions) to decompose programs into smaller functional components.

● A program will now consist of one or more functions, one of them being main().

● Program execution begins with main()

● main() can call other functions, including library functions such as printf(), rand().

● Functions use program variables, whose access is determined by scope rules.

3

Function Definition

● Everything before the first brace is the
header of the function.

● Everything between the braces is the body
of the function definition.

● The parameter list is a comma-separated
list of declarations.

4

int factorial(int n) {
 int product = 1;
 for (int i = 2; i <= n; i++) {
 product = product * i
 }
 return product;
}

● General form:

 

type function_name(parameter list) { declarations statements }

Detailed description of the example
● A definition alone does not execute anything. The function needs to be called for something

to happen.

● Evaluating expression factorial(7) causes a call.

● The effect is to execute the code in the function definition, with n having the value 7.

5

int factorial(int n) {
 int product = 1;
 for (int i = 2; i <= n; i++) {
 product = product * i
 }
 return product;
}

The value returned by the function
has type int

The parameter list here is the
declaration int n. The function has a

single parameter of type int.

Function definition/call example

● Evaluating expression wrt_address() causes
function to be called.

6

void wrt_address(void) {
 printf("%s\n%s\n%s\n%s\n%s\n\n",
 "********************",
 "** SANTA CLAUS **",
 "** NORTH POLE **",
 "** EARTH **",
 "********************"),
}

It does not return any value It does not have any parameters

int main() {
 for (int i = 0; i < 3; i++) {
 wrt_address();
 }
 return 0;
}

Function Parameters and Local Variables

● In the definition, the name of the function is followed
by a parenthesized list of parameter declarations.

● Parameters act as placeholders for values that are
passed when the function is called.

● Sometimes, to emphasize their role as placeholders,
these parameters are called the formal parameters
of the function.

● The function body is a block and it may contain
declarations of local variables.

7

int twice(int x) {
 return (2 * x);
}

int add(int a, int b, int c) {
 int sum = a + b + c;
 return sum;
}

One job, one function

● Designing programs as collections of functions is essential for dealing with complexity.

● If programs are adequately separated into functions, it can become easier to reason about single
functions and their behavior

● Both the writing and debugging are made easier.

● It is also easier to maintain or modify programs modularized into functions.

● We can change just the set of functions that need to be rewritten and expect the rest of the code to
work correctly.

● Functions should be clear, readable and self documenting.

● It is important that each function has a single responsibility.

● It is important to choose adequate names for functions, that reflect their behavior

8

The return statement

● The return statement may or may not include an expression.

● The expression being returned can be enclosed in parentheses,
but this is not required.

● When a return statement is encountered, execution of the
function is terminated and control is passed back to the calling
environment.

● If the return statement contains an expression, then the value
of the expression is passed back to the calling environment as
well.

9

return;
return ++a;
return (a * b);

Return Statements and Returned Values
● There can be zero or more return statements in a function.

● If there is zero, control comes back to calling environment at the end of the
function body.

● Even if a function returns a value, a program does not need to use it:

10

getchar(); // get a char and do nothing with it
c = getchar(); // get a char and assign it to c

Function prototypes
● Like variables, C requires functions to be declared before they are used.

● The syntax to declare a function is called the function prototype.

● A prototype tells the number and type of arguments that are passed to the
function and the type of the value that is to be returned by the function.

● Example: char toUpper(char);

● This tells that toUpper is a function that takes a single argument of type
char and returns a char.

11

Example of top-down design: creating a table of powers

12

#define N 7

long power(int, int);
void prn_heading(void);
void prn_tbl_of_powers(int);

int main(void) {
 prn_headin();
 prn_tbl_of_powers(N);
 return 0;
}

long power(int m, int n) {
 int i;
 long product = 1;
 for (i = 1; i <= n; ++i) {
 product = product * m;
 }
 return product;
}

void prn_heading(void) {
 printf("\n::::: A TABLE OF POWERS :::::\n\n");
}

void prn_tbl_of_powers(int n) {
 int i, j;
 for (i = 1; i <= n; ++i) {
 for (j = 1; j <= n; ++j) {
 if (j == 1) {
 printf("%ld", power(i, j));
 }
 else {
 printf("%9ld", power(i, j));
 }
 }
 putchar('\n');
 }
}

Alternative Style

● Because function definitions also serve as
function prototypes, an alternative style is to
remove the prototypes and to put the
definitions before the calls.

● This makes main() go last.

13

Call-by-value
● Functions are invoked by writing their name and an appropriate list of

arguments within parentheses.

● These arguments match in number and type (or compatible type) the
parameters in the parameter list in the function definition.

● All arguments are passed “by value”. This means that each argument is
evaluated, and its value is used locally in the execution of the function.

● In particular, a variable itself is actually not passed to a function, what is
passed is its value.

● So, a function does not modify a variable, if this is passed as argument to the
function from the calling environment.

14

Example

15

int compute_sum(int n);

int main(void) {
 int n = 3, sum;

 printf("%d\n", n);
 sum = compute_sum(n);
 printf("%d\n", n);
 printf("%d\n", sum);
 return 0;
}

int compute_sum(int n) {
 int sum = 0;
 while (n > 0) {
 sum = sum + n;
 --n;
 }
 return sum;
}

Function Call Summary

• Each expression in the parameter list is evaluated.

• Each value is assigned to its corresponding formal parameter at the beginning of the body
of the function.

• The body of the function is executed.

• If a return statement is reached, it is executed and the control is passed back to the calling
environment.

• If the return statement includes an expression, it is evaluated and that value is passed back
to the calling environment too.

• If no return statement is reached, control is passed back to the calling environment when
the end of the body of the function is reached.

16

Summary

• Functions help structuring C programs. They help breaking down a problem into
smaller subproblems, each solved by a corresponding function.

• A return statement ends the execution of a function and passes the control back
to the calling environment. If the return statement contains an expression as
well, then the value of that expression is passed back as well.

• A function prototype tells the compiler the type and number of its parameters
and the type of its returned value. If there are no parameters, the word void is
used; if the function returns no value, void is also used as return type.

• Arguments to functions are passed by value in C. They must be type compatible
with the corresponding types specified in the function prototype or definition.

17

A recursive definition is the definition of a concept in terms of itself
Recursion in algorithms:
• Natural approach to solve many computational problems
• A recursive algorithm uses itself to solve one or more smaller

identical problems

Recursion in programming languages:
• Recursive functions implement recursive algorithms
• A recursive function includes a call to itself

Recursion

The structure of a recursive definition

A recursive definition must involve:

• Base cases, simple cases in the definition that do not
define the concept in terms of itself

• Recursive cases, cases whose definition is given in
terms of simpler instances of the same concept

Every recursive case must eventually reach a base
case.

Components of a Recursive Algorithm
1. What is a smaller identical problem(s)?
�Decomposition

2. How are the answers to smaller problems combined to
form the answer to the larger problem?
�Composition

3. Which is the smallest problem that can be solved easily
(without further decomposition)?
�Base/stopping case

An example: Factorial numbers
A classical example of a recursive definition in Mathematics is the definition of a
factorial numbers:

- Base case: Factorial of one is one:
1! = 1

- Recursive case: Factorial of a number n greater than one is n times the factorial
of (n-1):

n! = n x (n - 1)!, provided n > 1

Factorial function

(n receives 3)

(n receives 2)

(n receives 1)

returns 1

returns 2

returns 6

1

2

6

Fibonacci Numbers
• The numbers in the Fibonacci sequence can also be recursive defined:
• The n-th Fibonacci number is:

• n, if n <= 1
• The sum of the two previous Fibonacci numbers, if n > 1:

• fib(n) = fib(n-1) + fib(n-2)

Fibonacci function

Execution Trace (decomposition)
fibonacci(4)

fibonacci(3) fibonacci(2)

Execution Trace (decomposition)
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(1)fibonacci(2)

Execution Trace (composition)
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(1)->0fibonacci(2)->1

+

+

Execution Trace (composition)
fibonacci(4)

fibonacci(3)->1 fibonacci(2)->1

+

Execution Trace (composition)
fibonacci(4)->2

Crucial aspects of a recursive function
• Case-based definitions

• Using if-else statement (or some other branching statement)
• Some branches perform recursive calls (recursive cases):

– "smaller" arguments or solve "smaller" versions of the same
task (decomposition)

– Combine the results (composition) [if necessary]
• Other branches: no recursive calls

– stopping cases or base cases

Template
… rec_func(…)
{
 if (…)// base case
 {
 }
 else // decomposition & composition
 {
 }
 return … ; // if not void method
}

Is this correct?

public static int factorial(int n)
{
 return factorial(n – 1) * n;
}

Infinite recursion
• Infinite Recursion

– Incorrectly defined recursive solution
– No decomposition (recursive calls are not on smaller problem instances)

– Base cases may exist, and not be reachable
– (Insufficient base cases, incorrectly defined decomposition)

– No base case
• Stack: keeps track of function calls

– Method begins: add function local data onto the stack
– Method ends: remove function local data from the stack

• Recursion never stops; stack eventually runs out of space
– Stack overflow error

• Example: 2030 has 2 zeros
• If n is smaller than 10, it has no digits
• If n is grater than 10 (i.e., it has two or more digits):

– the number of zeros is the number of zeros in n with the last digit removed
– plus an additional 1 if the last digit is zero

• Examples:
– number of zeros in 20030 is number of zeros in 2003 plus 1
– number of zeros in 20031 is number of zeros in 2003 plus 0

Number of Zeros in a positive number

recursive

zero_count function

Summary
• Recursive function: a function that calls itself

• Very powerful algorithm design technique

• Recursive algorithm design:

• Decomposition (smaller identical problems)

• Composition (combine results)

• Base case(s) (smallest problem, no recursive calls)

• Implementation

– Conditional (e.g. if-then-else) statements to separate different cases

– Avoid infinite recursion

• Make sure recursive calls are on smaller problem instances (decomposition)

• Base cases must exist and be reachable from all (valid) function calls

