Introduction to Computer Science
Lecture 9

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Today

- Functions
- The return statement
- Function prototypes

- Call-by-value

The big picture

: taking a problem and breaking it into small, manageable
pieces is critical to writing large programs.

- Imperative programming languages typically provide (in C,
functions) to decompose programs into smaller functional components.

- A program will now consist of one or more functions, one of them being main ().
- Program execution begins with main ()
- main() can other functions, including library functions such as printf(), rand().

- Functions use program variables, whose access is determined by scope rules.

Function Definition

- General form:

type function name (parameter list) { declarations statements }

- Everything before the first brace is the int factorial(int n) <

header of the function. int product = 1;
- Everything between the braces is the body for (int 1 :_2; L <= nj 1++) A
) N product = product *x 1
of the function definition. 1

_ return product;
- The parameter list is a comma-separated 1 P

list of declarations.

Detailed description of the example

- A definition alone does not execute anything. The function needs to be called for something
to happen.

- Evaluating expression factorial (7) causes a call.

- The effect is to execute the code in the function definition, with n having the value 7.

int factorial(n) {
The value returned by the function int 5 Foduct = 1;
has t int ‘ . . : :
e for (int 1 = 2; i <= n; i++) {
product = product * 1
The parameter list here is the 1
declaration int n. The function has a return p roduct -
’

single parameter of type int. }

Function definition/call example

voidiﬁrt_address(void);y . : i
DrinTE("%5\n%s\n%s\n%s\n%s\n\n" Evaluating expression wrt address () causes

M skskskoksk ok kR kR kR ok ok function to be called.
"xx SANTA CLAUS *x'",

"xx NORTH POLE *x"

"xx EARTH *x',

" spokskokskokskokskokskokskokskokskokskok ')

int main() {
for (int 1 = 0; i < 3; i++) {
wrt_address();
}

return 0;

L — e e

}

T — W

Function Parameters and Local Variables

- In the definition, the name of the function is followed
by a parenthesized list of parameter declarations.

int twice(int x) {

- Parameters act as placeholders for values that are return (2 x x);
passed when the function is called. !
- Sometimes, to emphasize their role as placeholders,
int add(int a, int b, int c) {
these parameters are called the formal parameters int sum = a + b + c;
of the function. , rerurn sum

- The function body is a block and it may contain
declarations of local variables.

One job, one function

- Designing programs as collections of functions is essential for dealing with complexity.

- If programs are adequately separated into functions, it can become easier to reason about single
functions and their behavior

- Both the writing and debugging are made easier.
- It is also easier to maintain or modify programs modularized into functions.

« We can change just the set of functions that need to be rewritten and expect the rest of the code to
work correctly.

+ Functions should be clear, readable and self documenting.

- It is important to choose adequate names for functions, that reflect their behavior

8

The return statement

- The return statement may or may not include an expression.

- The expression being returned can be enclosed in parentheses,
but this is not required.

return;
return ++a;
return (a x b);

- When a return statement is encountered, execution of the

function is terminated and control is passed back to the calling
environment.

- If the return statement contains an expression, then the value

of the expression is passed back to the calling environment as
well.

Return Statements and Returned Values

- There can be zero or more return statements in a function.

- If there is zero, control comes back to calling environment at the end of the
function body.

- Even if a function returns a value, a program does not need to use it:

getchar(); // get a char and do nothing with it
c = getchar(); // get a char and assign it to c

10

Function prototypes

- Like variables, C requires functions to be declared before they are used.
- The syntax to declare a function is called the function prototype.

- A prototype tells the number and type of arguments that are passed to the
function and the type of the value that is to be returned by the function.

- Example: char toUpper (char);

- This tells that toUpper is a function that takes a single argument of type
char and returns a char.

11

Example of top-down design: creating a table of powers

#define N 7

long power(int, int);
void prn_heading(void);
void prn_tb1l_of_powers(int);

int main(void) {
prn_headin();
prn_tbl_of_powers(N);
return 0;

void prn_heading(void) {

printf("\n::::: A TABLE OF POWERS

void prn_tb1l_of_powers(int n) {
int i, j;
for (i =1; 1 <= n; ++i) {
for (j =1; j <= n; ++j) {
if (j == 1) {
printf("sld", power(i, j));

else {
printf("%91d", power(i, j));

}
putchar('\n');
b

long power(int m, int n) {
int i;
long product = 1;
for (i = 1; i <= n; ++1) {
product = product * m;
b

return product;

Here is the output of the prbgram:

::::: A TABLE OF POWERS :::::

1 1 1 1 1
2 4 8 16 32
3 9 27 81 243

1
64
729

X
128
2187

12

Alternative Style

- Because function definitions also serve as
function prototypes, an alternative style is to
remove the prototypes and to put the
definitions before the calls.

- Thismakesmain () go last.

13

long power(int m, 1int n)

}

void prn_tb]_of_powers(int n)

int main(void)

{
prn_heading();
pron_th1_of_powers(N);
return 0;

}

Call-by-value

- Functions are invoked by writing their name and an appropriate list of
arguments within parentheses.

- These arguments match in number and type (or compatible type) the
parameters in the parameter list in the function definition.

- All arguments are passed “by value”. This means that each argument is
evaluated, and its value is used locally in the execution of the function.

- In particular, a variable itself is actually not passed to a function, what is
passed is its value.

- S0, a function does not modify a variable, if this is passed as argument to the
function from the calling environment.

14

Example

int compute_sum(int n);

int compute_sum(int n)

int main(void) { int sum = 0;

int n = 3, sum; while (n > 0) {
sum = sum + n;

printf("sd\n", n); ——n;
sum = compute_sum(n); }
printf("sd\n", n); return sum;
printf("sd\n", sum); s
return 0;

15

Function Call Summary

» Each expression in the parameter list is evaluated.

« Each value is assigned to its corresponding formal parameter at the beginning of the body
of the function.

* The body of the function is executed.

 If a return statement is reached, it is executed and the control is passed back to the calling
environment.

« If the return statement includes an expression, it is evaluated and that value is passed back
to the calling environment too.

 If no return statement is reached, control is passed back to the calling environment when
the end of the body of the function is reached.

16

Summary

* Functions help structuring C programs. They help breaking down a problem into
smaller subproblems, each solved by a corresponding function.

e A return statement ends the execution of a function and passes the control back
to the calling environment. If the return statement contains an expression as
well, then the value of that expression is passed back as well.

A function prototype tells the compiler the type and number of its parameters
and the type of its returned value. If there are no parameters, the word void is
used; if the function returns no value, void is also used as return type.

« Arguments to functions are passed by value in C. They must be type compatible
with the corresponding types specified in the function prototype or definition.

17

Recursion

A recursive definition is the definition of a concept in terms of itself
Recursion in algorithms:
« Natural approach to solve many computational problems

* Arecursive algorithm uses itself to solve one or more smaller
identical problems

Recursion in programming languages:
« Recursive functions implement recursive algorithms
* A recursive function includes a call to itself

The structure of a recursive definition

A recursive definition must involve:

 Base cases, simple cases in the definition that do not
define the concept in terms of itself

* Recursive cases, cases whose definition is given in
terms of simpler instances of the same concept

Every recursive case must eventually reach a base
case.

Components of a Recursive Algorithm

1. What 1s a smaller identical problem(s)?
?] Decomposition

2. How are the answers to smaller problems combined to
form the answer to the larger problem?

3. Which is the smallest problem that can be solved easily
(without further decomposition)?
?] Base/stopping case

An example: Factorial numbers

A classical example of a recursive definition in Mathematics is the definition of a
factorial numbers:

- Base case: Factorial of one is one:
1 =1

- Recursive case: Factorial of a number n greater than one is n times the factorial
of (n-1):

n'=nx(n-1)!, provided n > 1

Factorial function

int factorial(int n) {
1f (n <= @) return -1;

else {
1f (n == 1) {
return 1;
}
else {

return n * factorial(n - 1);

}
}
}

int mainQ)

{

printf("The factorial of 3 is: %d\n",
return 0;

-’

returns 6

(n receives 3)

int factorial(int n) {
if (n <= @) return -1;
else {
if (n==1) {
return 1;
}

else {

returnn *_;

(n receives 2)

returns 2

int factorial(int n) {
if (n <= @) return -1;

else {
if (n==1) {
return 1;
}
else {

return n *

} IR

returns 1

(n receives 1)

int factorial(int n) {
if (n <= @) return -1;

else {
if (n=1) {
return 1;
¥
else {
return n * factorial(n - 1);
}
}

Fibonacci Numbers

 The numbers in the Fibonacci sequence can also be recursive defined:
« The n-th Fibonacci number is:
e n,ifn<=1
« The sum of the two previous Fibonacci numbers, if n > 1:
« fib(n) = fib(n-1) + fib(n-2)

Fibonacci function

int fibonacci(int n) {
1f (n <= 2) return n - 1;
else {
return fibonacci(n - 1) + fibonacci(n - 2);

¥
¥

Execution Trace (decomposition)

fibonacci (4)

N

fibonacci (3) fibonacci (2)

Execution Trace (decomposition)

fibonacci (4)

N

fibonacci (3) fibonacci (2)

N

fibonacci (2) fibonacci (1)

Execution Trace (composition)

fibonacci (4)

PN

fibonacci (3) fibonacci (2)

N

fibonacci (2)->1 fibonacci (1) ->0

Execution Trace (composition)

fibonacci (4)

N

fibonacci (3) ->1 fibonacci (2)->1

Execution Trace (composition)

fibonacci (4) ->2

Crucial aspects of a recursive function

» Case-based definitions
« Using if-else statement (or some other branching statement)
* Some branches perform recursive calls (recursive cases):
—"smaller" arguments or solve "smaller” versions of the same
task (decomposition)
— Combine the results () [if necessary]

« Other branches: no recursive calls
— stopping cases or base cases

Template

. rec func/(..)
{
if (..)// base case

{

}

else // decomposition &
{

}

return .. ; // i1f not void method

Is this correct?

public static int factorial (int n)

{

return factorial(n - 1) * n;

}

Infinite recursion

* Infinite Recursion
— Incorrectly defined recursive solution
— No decomposition (recursive calls are not on smaller problem instances)
— Base cases may exist, and not be reachable
— (Insufficient base cases, incorrectly defined decomposition)
— No base case

« Stack: keeps track of function calls
— Method begins: add function local data onto the stack
— Method ends: remove function local data from the stack

« Recursion never stops; stack eventually runs out of space
— Stack overflow error

Number of Zeros in a positive number

Example: 2030 has 2 zeros

If n 1s smaller than 10, it has no digits recursive

If n 1s grater than 10 (i.e., it has two or more digits):
— the number of zeros is the number of zeros1n n with the last digit removed

— plus an additional 1 if the last digit is zero

Examples:
— number of zeros in 20030 is number of zeros in 2003 plus 1

— number of zeros in 20031 1s number of zeros in 2003 plus 0

zero count function

int zero_count(int n) {

if (n < 10) {
return 0;

}

else {
int prefix_count = zero_count(n / 10);
if (n% 10 == 0) {

return prefix_count + 1;

}
else {

return prefix_count;
ks

Summary

Recursive function: a function that calls itself

Very powerful algorithm design technique

Recursive algorithm design:
« Decomposition (smaller identical problems)
« Composition (combine results)

+ Base case(s) (smallest problem, no recursive calls)

Implementation
— Conditional (e.g. if-then-else) statements to separate different cases
— Avoid infinite recursion
« Make sure recursive calls are on smaller problem instances (decomposition)

- Base cases must exist and be reachable from all (valid) function calls

