Introduction to Computer Science
Lecture 7

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Today's Topics

- Good Programming Practices
- main()'s first parameter: argc

+ Color Output

Guidelines for your C programs

« Main rule:

Programs must be functionally correct, and also clear, readable and easy to
understand.

- In this course and future ones (Int. Systems Programming, Digital Systems, Data
Structures), we will be paying close attention to your coding style and taking it into
consideration when marking/assigning grades.

- Here are a few guidelines about coding style.

Naming

« Good code should be mostly self-documenting.
- Variables names should make it clear what you are doing.

- At the moment, we are still writing short and simple programs, so typically short
generic names are sufficient:

indexes: |, |, K,...
accumulators/user input: a, b, c...

- For longer and more complex programs, variable names must be more
meaningful of the entities that the variables represent, avoiding very long names.

Naming Examples

Purpose of Variable

Running total of
checks written to date

Velocity of a bullet
train

Current date

Lines per page

Good Names, Good
Descriptors

| runningTotal,

checkTotal

velocity, trainVelocity,

velocityInMph

currentDate,

todaysDate

| linesPerPage

Bad Names, Poor
Descriptors

| written, ct, checks,

CHKTTL, x, x1, x2

velt, v, tv, x, x1, x2,

train

cd, current, c, x, x1,

X2, date

| Ipp, lines, |, x, x1, x2

Optimal Name Length

- The optimal length seems to be somewhere between
X
and
maximumNumberOfPointsInModernOlympics

- Names that are too short do not convey enough meaning. In small programs
these are sometimes acceptable.

- Names that are too long can obscure the visual structure of the program.

Multiple-Word Variable Names

- Multiple-word variables should be formatted consistently.

- For example, "hashtable array size" or "hashtableArraySize" are
both okay, but "hashtable arraySize" is not.

- Ifyou use "hashtable array size"in one place in a program, using
"hashtableArray" somewhere else in the program would not be okay.

- Some developers prefer the camelCase naming style ("hashtableArray",
etc.). Others the

Comments

- Comments should be present in your programs, but not excessively.

- Comments can be useful in:

File header: a good place to put your name and email address, and a
comment describing the purpose of the file if it fits into a larger project

Large blocks of code: If a block of code is particularly long, a comment at
the top can help the reader know what to expect as they're reading it, and
let them skip it if it's not relevant.

- Tricky bits of code: If there's no way to make some code self-evident, then it
Is acceptable to describe what it does with a comment.

8

Indentation

- Proper indentation can greatly increase the readability of code.

- Every time you open a block of code ("if" statement, "for" or "while" loop, a
function, etc.), you should indent one additional level.

- You are free to use your own indent style, but you must be consistent: if you
use 2 spaces as an indent in some places, you should not use 4 spaces or a

tab elsewhere.

- Not sure what style to use? Use Kernighan & Ritchie style:

$ indent -kr myfile.c

Line Length

- We require program lines be no longer than 80 characters, so that code can
be viewed without side scrolling.

- (This is due to historical reasons, but it’s still mostly the case in terminals)
- |t also helps to maintain a relatively simple program structure

- If you indent with tabs, assume tab size of 2 characters when calculating line
lengths.

- To see the maximum line length of file.c, run:

$ wc -L file.c

10

No Magic Numbers

- Magic numbers are numbers in your code that have more meaning than simply their
own values.

- Forexample: "for (1i=0;1<20;i++) x += i;"andthen "x/20"

- 20 is a magic number.

- Using named constants also makes your program easier to modify.

- Use #define to clarify the meaning of magic numbers. In the above example:
#define TOTAL 20
then "for (i=0; i<TOTAL;i++) x += i;" andthen "x/TOTAL"

11

No Dead Code

- Dead code is code that is not run when your program runs.

- Sometimes because of an always true/false condition, sometimes because of
an early break or return.

- Your submissions should have no dead code in it.

int foo(void) {

int a = 24;

int b = 25; // assignment to dead variable
int c;

C = a x 4;

return c;

b = 24; // unreachable code

return 0;

12

No Surprises

- Code must be as straightforward as possible.
Use good programming practices.
- Structured programming / Good forms of iteration
« Avoid unnecessary variables.
- Avoid unnecessary features.
If arrays are not needed, do not use them.

» You impose more work on who reads your code when you add unnecessary things
to your programs.

13

Fixing Bugs

When doing a programming homework or project, you will often realize that your
program has bugs that need to be fixed.

Set a time limit;

« 0 minutes: gcc -Wall

- 1 -10 minutes: active debugging: say out loud what the problem is, what you
expect your code to do, read it step by step from the beginning.

- Speak to someone near you.

- > 10 minutes: take a break / ask for help.

14

Summary

- Programs can become very complex and difficult to reason about
- It is important that we favor readability in programs to favor extensibility/reuse/maintenance
- Programs need to be read to be extended, reused, and maintained.

- A lot more time is spent in extension/reuse/maintenance than the time spent for the initial
program construction

- Programs will most likely have defects
- Be systematic about finding and fixing bugs

-+ Use tool support for debugging

15

main()'s first parameter: argc

- We have been using main () as a function with no parameters.

- Think of main () 's parameters as variables that tell how the program was
executed from the command line.

- main() can have two specific parameters.
- We will see the first one now: argc.

- argc stands for argument count.

- It’s the number of words in the command line used when the program was
executed.

16

Example

- Write a program that prints the value of the integer parameter argc using
printf. Try:

$ gcc arge.c -o argc
$./argc

$./argc x

$./argc x x

$./argc x x x X X

17

Escape Sequences and the Escape Character

- An escape sequence is a sequence of characters that has a meaning other than
the literal characters of the sequence.

- Typically used to represent non-printable characters, and send other
styling commands to the terminal.

- \e : represents the escape character (ESC in ASCII table, value $1B)

Escape sequences are supported by many programming language compilers
and interpreters (supported by gcc and tcc, although not part of the C standard)

18

ANSI Escape Codes

- ANSI Escape Codes are enabled when printing the Escape Character.
- Almost all terminal emulators support them.
- Three main categories of codes:

- text attributes: bold, underline, blink

- foreground (text) color

- background color

19

List of Attributes and Colors

- Teat atlributes Escape sequence Foreground colors Escape sequence Background colors
\x1b[Om Al attributes off(color at startup) \x1b[30m Black 1b[40m Black
\x1b[1m Bold on(enable foreground intensity) x1b[31m Red sal bl fesct
\x1b[4m Underline on \x1b[32m Green 1bf42m Green
\x1b[5m Blink on(enable background intensity) \x1b[33m Yellow 1[43m vellow
\x1b[21m Bold off(disable foreground intensity) \x1b[34m Blue veibi4sm Bwie
\x1b[24m Underline off \x1bj35m Magenta balbiy e aat
\x1b[25m Blink off(disable background intensity) \x1b[36m Cyan \x1b[46m Cyon
\x1b[37m White \x1b[47m White
\x1b[39m Default(foreground color at startup) \x1b[49m Default(background color at startup)
\x1b[90m Light Gray \x1b[100m Light Gray
\x1b[91m Light Red \x1b[101m Light Red
\x1b[92m Light Green \x1b[102m Light Green
Sources: x1b[93m Light Yellow 1b{103m Light Yellow
https://tforgione.fr/posts/ansi-escape-codes/ \x1b[94m Light Blo {b{104m Light Blue
https://github.com/shiena/ansicolor/ \x1b[95m Light Magenta \x1b[105m Light Magenta
\x1b[96m Light Cyan \x1b[106m Light Cyan

\x1b[97m Light White \x1b[107m Light White
20

https://tforgione.fr/posts/ansi-escape-codes/
https://github.com/shiena/ansicolor/

Example in a C program

#include <stdio.h>

#define RESET "\e[Om"
#define GREEN "\e[102m" $ tcc -w -run color.c

#define BLUE "\e[104m"
#define MAGENTA "\e[105m"

int main(){
printf("%ssHello %sWorld!%s\n", GREEN, MAGENTA, RESET);
return 0;

21

