
Introduction to Computer Science – Winter 2022 
Lecture 7

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 7

Today's Topics

● Good Programming Practices

● main()'s first parameter: argc

● Color Output

2

Guidelines for your C programs

● Main rule:

Programs must be functionally correct, and also clear, readable and easy to
understand.

● In this course and future ones (Int. Systems Programming, Digital Systems, Data
Structures), we will be paying close attention to your coding style and taking it into
consideration when marking/assigning grades.

● Here are a few guidelines about coding style.

3

Naming
● Good code should be mostly self-documenting.

● Variables names should make it clear what you are doing.

● At the moment, we are still writing short and simple programs, so typically short
generic names are sufficient:

● indexes: i, j, k,…

● accumulators/user input: a, b, c...

● For longer and more complex programs, variable names must be more
meaningful of the entities that the variables represent, avoiding very long names.

4

Naming Examples

5

Optimal Name Length

● The optimal length seems to be somewhere between

 x

 and

 maximumNumberOfPointsInModernOlympics

● Names that are too short do not convey enough meaning. In small programs
these are sometimes acceptable.

● Names that are too long can obscure the visual structure of the program.

6

Multiple-Word Variable Names

● Multiple-word variables should be formatted consistently.

● For example, "hashtable_array_size" or "hashtableArraySize" are
both okay, but "hashtable_arraySize" is not.

● If you use "hashtable_array_size" in one place in a program, using
"hashtableArray" somewhere else in the program would not be okay.

● Some developers prefer the camelCase naming style ("hashtableArray",
etc.). Others the

7

Comments

● Comments should be present in your programs, but not excessively.

● Comments can be useful in:

● File header: a good place to put your name and email address, and a
comment describing the purpose of the file if it fits into a larger project

● Large blocks of code: If a block of code is particularly long, a comment at
the top can help the reader know what to expect as they're reading it, and
let them skip it if it's not relevant.

● Tricky bits of code: If there's no way to make some code self-evident, then it
is acceptable to describe what it does with a comment.

8

Indentation

● Proper indentation can greatly increase the readability of code.

● Every time you open a block of code ("if" statement, "for" or "while" loop, a
function, etc.), you should indent one additional level.

● You are free to use your own indent style, but you must be consistent: if you
use 2 spaces as an indent in some places, you should not use 4 spaces or a
tab elsewhere.

● Not sure what style to use? Use Kernighan & Ritchie style:

$ indent -kr myfile.c

9

Line Length

● We require program lines be no longer than 80 characters, so that code can
be viewed without side scrolling.

● (This is due to historical reasons, but it’s still mostly the case in terminals)

● It also helps to maintain a relatively simple program structure

● If you indent with tabs, assume tab size of 2 characters when calculating line
lengths.

● To see the maximum line length of file.c, run:

 $ wc -L file.c

10

No Magic Numbers

● Magic numbers are numbers in your code that have more meaning than simply their
own values.

● For example: "for(i=0;i<20;i++) x += i;" and then "x/20"

● 20 is a magic number.

● Using named constants also makes your program easier to modify.

● Use #define to clarify the meaning of magic numbers. In the above example:

 #define TOTAL 20

 then "for(i=0;i<TOTAL;i++) x += i;" and then "x/TOTAL"

11

No Dead Code
● Dead code is code that is not run when your program runs.

● Sometimes because of an always true/false condition, sometimes because of
an early break or return.

● Your submissions should have no dead code in it.

12

int foo(void) {

 int a = 24;

 int b = 25; // assignment to dead variable

 int c;

 c = a * 4;

 return c;

 b = 24; // unreachable code

 return 0;

}

No Surprises

● Code must be as straightforward as possible.

● Use good programming practices.

● Structured programming / Good forms of iteration

● Avoid unnecessary variables.

● Avoid unnecessary features.

● If arrays are not needed, do not use them.

● You impose more work on who reads your code when you add unnecessary things
to your programs.

13

Fixing Bugs

When doing a programming homework or project, you will often realize that your
program has bugs that need to be fixed.

Set a time limit:

● 0 minutes: gcc -Wall

● 1 – 10 minutes: active debugging: say out loud what the problem is, what you
expect your code to do, read it step by step from the beginning.

● Speak to someone near you.

● > 10 minutes: take a break / ask for help.

14

Summary

● Programs can become very complex and difficult to reason about

● It is important that we favor readability in programs to favor extensibility/reuse/maintenance

● Programs need to be read to be extended, reused, and maintained.

● A lot more time is spent in extension/reuse/maintenance than the time spent for the initial
program construction

● Programs will most likely have defects

● Be systematic about finding and fixing bugs

● Use tool support for debugging

15

main()'s first parameter: argc

● We have been using main() as a function with no parameters.

● Think of main()'s parameters as variables that tell how the program was
executed from the command line.

● main() can have two specific parameters.

● We will see the first one now: argc.

● argc stands for argument count.

● It’s the number of words in the command line used when the program was
executed.

16

Example

● Write a program that prints the value of the integer parameter argc using
printf. Try:

$ gcc argc.c -o argc

$./argc

$./argc x

$./argc x x

$./argc x x x x x

17

Escape Sequences and the Escape Character

● An escape sequence is a sequence of characters that has a meaning other than
the literal characters of the sequence.

● Typically used to represent non-printable characters, and send other
styling commands to the terminal.

● \e : represents the escape character (ESC in ASCII table, value $1B)

● Escape sequences are supported by many programming language compilers
and interpreters (supported by gcc and tcc, although not part of the C standard)

18

ANSI Escape Codes

● ANSI Escape Codes are enabled when printing the Escape Character.

● Almost all terminal emulators support them.

● Three main categories of codes:

● text attributes: bold, underline, blink

● foreground (text) color

● background color

19

List of Attributes and Colors

Sources:

https://tforgione.fr/posts/ansi-escape-codes/

https://github.com/shiena/ansicolor/

20

https://tforgione.fr/posts/ansi-escape-codes/
https://github.com/shiena/ansicolor/

Example in a C program

21

#include <stdio.h>

#define RESET "\e[0m"

#define GREEN "\e[102m"

#define BLUE "\e[104m"

#define MAGENTA "\e[105m"

int main(){

 printf("%sHello %sWorld!%s\n", GREEN, MAGENTA, RESET);

 return 0;

}

