
Introduction to Computer Science – Winter 2022 
Lecture 6

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 6

Today's Topics

● printf() formatting

● getchar() and putchar()

● ASCII code

● Input/Output from/to the command line

● End-Of-File (EOF) signal

2

Example: Computing Powers of 2

The output of the program is:

3

/* Some powers of 2 are printed. */

#include <stdio.h>

int main(void) {
 int i = 0, power = 1;
 while (++i <= 10)
 printf("%-6d", power *= 2);
 printf("\n");
 return 0;
}

2 4 8 16 32 64 128 256 512 1024

/* Some powers of 2 are printed. */

#include <stdio.h>

int main(void) {
 int i = 1, power = 1;
 while (i <= 10) {
 printf("%-6d", power *= 2);
 i++;
 }
 printf("\n");
 return 0;
}

Example: Computing Powers of 2

The output of the program is:

4

/* Some powers of 2 are printed. */

#include <stdio.h>

int main(void) {
 for (int i = 1, power = 2; i <= 10; i++) {
 printf("%-6d", power);
 power = power * 2;
 }
 printf("\n");
 return 0;
}

2 4 8 16 32 64 128 256 512 1024

About printf() Formatting

printf("%-6d", power *= 2);

The placeholder %-6d indicates that the value is to be printed as a decimal
integer with field width 6. The minus sign indicates that the value is to be left-
adjusted in its field.

Try without the minus sign to align values to the right: %6d

Complete information about formatting is available in the manpage of printf():

 
 $ man 3 printf

5

Standard Input and Standard Output

● Consider the following program
● It reads characters from the standard

input (normally the keyboard) with
scanf()

● It writes each character twice to the
standard output (normally the terminal
screen) with printf()

● %c is the placeholder to read and print
a single character

6

#include <stdio.h>

int main(void) {
 char c;
 while (scanf("%c", &c) == 1) {
 printf("%c", c);
 printf("%c", c);
 }
 return 0;
}

Return Value of scanf()

● When scanf() is successful, it returns
the number of input items successfully
matched and assigned; this can be
fewer than provided for, or even zero, in
the event of an early matching failure.

● Here, scanf("%c", &c) has a

single placeholder (%c) so while
scanf("%c", &c) returns value 1,
the reading of input is correct.

7

#include <stdio.h>

int main(void) {
 char c;
 while (scanf("%c", &c) == 1) {
 printf("%c", c);
 printf("%c", c);
 }
 return 0;
}

Redirection of Input and Output

● Suppose we compile the program into an executable dbl_out:
 $ tcc -w dbl_out.c -o dbl_out

● We can use redirection to allow the the executable to receive input and
produce output in different ways:

 $./dbl_out
 $./dbl_out < infile
 $./dbl_out > outfile
 $./dbl_out < infile > outfile

8

Redirection of Input and Ouput

dbl_out: input from keyboard (stdin), output to screen (stdout)

dbl_out < infile: input from file "infile", output to screen (stdout)

dbl_out > outfile: input from keyboard (stdin), output to file "outfile"

dbl_out < infile > outfile: input from file "infile", output to file "outfile"

9

Why does the loop end?

● When using this program with a standard
input redirection:

 $./dbl_out < infile

the input file is consumed. When it is
completely consumed, an End-of-File
signal is sent to the program, making
scanf() return a special value (not 1).

10

#include <stdio.h>

int main(void) {
 char c;
 while (scanf("%c", &c) == 1) {
 printf("%c", c);
 printf("%c", c);
 }
 return 0;
}

The End-of-File Signal

● When the input is taken from a file, then the end-of-file signal is automatically
generated when the input file is done being fed to the program.

● When a program takes its input from the keyboard, it is necessary to generate
an end-of-file signal manually.

● In Linux, control+d is the typical way to generate an end-of-file signal.

11

Control+c and End-of-File Are Not The Same

● The following command is of special interest:

 $./dbl_out > outfile
● This command causes dbl_out to take its input from the keyboard

(standard input) and to write its output in the file outfile, provided that
you issue an end-of-file signal when you are finished.

● But if instead of typing control+d, you type control+c to kill the program,
nothing gets written into outfile!

12

getchar() and putchar()

● Functions getchar() and putchar() are defined in stdio.h.

● They are used to read a single character from the keyboard and to write

a single character to the screen, respectively.

● They are typically used to manipulate character data.

● They are sometimes more convenient to use than scanf() and
printf().

13

getchar() Example

14

int main() {
 int input;
 input = getchar();
 if (input == 'a' || input == 'e' || input == 'i' || input == 'o' || input == 'u')
 printf("We have a vowel!\n");
 else
 printf("This is not a vowel.\n");
 return 0;
}

Example with getchar() and putchar()

15

int main(void) {
 int c;
 while ((c = getchar()) != EOF) {
 putchar(c);
 putchar(c);
 }
 return 0;
}

Example with getchar() and putchar()

16

int main(void) {
 int c;
 c = getchar();
 while (c != EOF) {
 putchar(c);
 putchar(c);
 c = getchar();
 }
 return 0;
}

ASCII

from https://en.wikipedia.org/wiki/ASCII

The American Standard
Code for Information
Interchange (ASCII) is a
standard that sets how to
interpret integers from 0 to
127 (0x00 to 0x7F in
hexa) as printable
characters and control
codes.

17

https://en.wikipedia.org/wiki/ASCII

Standard ASCII (0 to 127)

18

Extended ASCII (128 to 255)

19

getchar() and integer constants according to ASCII

20

int main() {
 int input;
 input = getchar();
 if (input == 97 || input == 101 || input == 105 || input == 111 || input == 117)
 printf("We have a vowel!\n");
 else
 printf("This is not a vowel.\n");
 return 0;
}

getchar() and integer constants (in hexadecimal)

21

int main() {
 int input;
 input = getchar();
 if (input == 0x61 || input == 0x65 || input == 0x69 || input == 0x6F || input == 0x75)
 printf("We have a vowel!\n");
 else
 printf("This is not a vowel.\n");
 return 0;
}

Why is c of type int and not char?
EOF is defined in stdio.h as -1

● The actual value of EOF is system-dependent.

● Value -1 is often used, but it is better to use
EOF and let the file stdio.h define its
concrete value.

getchar() evaluates to an int value, not char.
● The value used to signal the end of file cannot

be a character value (e.g., -1).

● Because c is an int, it can hold all possible

character values and the special value EOF.
22

int main(void) {
 int c;
 while ((c = getchar()) != EOF) {
 putchar(c);
 putchar(c);
 }
 return 0;
}

ASCII: observations
The most commonly used sequences of
characters exist in ASCII as sequences:

● characters '0' to '9' (digits)

● characters 'A' to 'Z' (uppercase latin

alphabet)

● characters 'a' to 'z' (lowercase latin

alphabet)

Checking whether some character is a digit, an uppercase letter or a lowercase letter, can be
done with a condition that checks for an interval.

23

Example: Capitalizing Letters

24

#include <stdio.h>

int main(void) {
 int c;
 while ((c = getchar()) != EOF) {
 if (c >= 'a' && c <= 'z') {
 putchar(c + 'A' - 'a');
 }
 else {
 putchar(c);
 }
 }
 return 0;
}

No need to learn ASCII codes

It is not necessary to memorize the
integer ASCII codes that correspond
to characters.

It’s generally enough to remember
that character codes are integers,
and groups of related commonly used
symbols are organized in sorted
intervals.

25

