
Introduction to Computer Science – Winter 2022 
Lecture 5

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 5

Review
Increment and decrement operators

2

 int a, b = 0, c = 0;
 a = ++b + ++c;
 printf("%d %d %d\n", a, b, c);
 a = b++ + c++;
 printf("%d %d %d\n", a, b, c);
 a = ++b + c++;
 printf("%d %d %d\n", a, b, c);
 a = b-- + --c;
 printf("%d %d %d\n", a, b, c);

What will this program print out?

Review
Iteration

3

 #include <stdio.h>
int main() {
 int h; scanf("%d", &h); int b; int z;
 z=1;
 b=z;
 while (!(z>=h+1)) { z=z+1;b=(z-1)*b; }
 printf("%d\n", b);
}

What does this program do?

Review
Iteration

4

#include <stdio.h>

int main() {

 int n;
 scanf("%d", &n);

 int factorial = 1;
 int i = 1;
 while (i <= n) {
 factorial = factorial * i;
 i++;
 }
 printf("%d\n", factorial);

 return 0;
}

Indent correctly.

Choose meaningful variable names.

Favor good forms of iteration.

Use comments!

/* Computes the factorial of a natural number n.

 * The factorial of n is the result of the product (1 * 2 * ... * n).

 * The argument is received from standard input.

 * The result is printed out on standard output.

 *
 * Author: John Doe
 * Date: April 18th 2023
 * Version: 0.1 */

Today's topics

● Assignment operators

● Definite iteration (“for” loops)

● Computing sums and products of sequences

● The return statement in main()

● The comma operator

5

Assignment operators
● In addition to =, there are other assignment operators, such as += and -=.

● An expression such as:

 k = k + 2;

adds 2 to the (old) value of k, and assigns the result to k. Also, the expression as a
whole will have that value (the value of the right hand side expression).

● The expression:

 k += 2;

accomplishes the same task!

6

Assignment operators

The different assignment operators have the following form:

 variable op= expression

where op is an operator. This is equivalent to

 variable = variable op (expression)

7

Assignment operators

= += -= *= /= %= >>= <<= &= ^= |=

Assignment operators - An Example

8

#include <stdio.h>

/* Computes the factorial of a natural number n.
 * The factorial of n is the result of the product (1 * 2 * ... * n).
 * The argument is received from standard input.
 * The result is printed out on standard output.
 *
 * Author: John Doe
 * Date: April 18th 2023
 * Version: 0.1
 */
int main() {

 int n;
 scanf("%d", &n);

 int factorial = 1;
 int i = 1;
 while (i <= n) {
 factorial *= i;
 i++;
 }
 printf("%d\n", factorial);

 return 0;
}

The For Statement
• It provides an additional mechanism to define iteration

• It can be reduced to “while” loops (while loops are more expressive)

• For loops correspond to a form of iteration known as “definite iteration”

• In definite iteration, the number of times that the loop body is executed is
determined

• Very useful for certain iteration patterns, e.g., sequence summations and products.

• In C, it has the following syntax:

 for (expr1 ; expr2; expr3) {
 statements;
 }

The For Statement

10

 for (expr1 ; expr2; expr3) {
 statements;
 }

Initialization: executed only
once, when for loop is

reached

condition: executed on every
iteration. Iteration stops when

condition is false.
increment: executed on every
iteration, after the loop body.

Loop body. Executed on
every iteration (if condition is

met).

For Loop Example

11

#include <stdio.h>

/* Computes the factorial of a natural number n.
 * The factorial of n is the result of the product (1 * 2 * ... * n).
 * The argument is received from standard input.
 * The result is printed out on standard output.
 *
 * Author: John Doe
 * Date: April 18th 2023
 * Version: 0.1
 */
int main() {

 int n;
 scanf("%d", &n);

 int factorial = 1;
 for (int i = 1; i <= n; i++) {
 factorial = factorial * i;
 }
 printf("%d\n", factorial);

 return 0;
}

For Loops vs While Loops

12

 for (expr1 ; expr2; expr3) {
 statements;
 }

 expr1;
 while (expr2) {
 statements;
 expr3;
 }

is equivalent to

• For loops can also be written as while loops (while loops are more
expressive):

For Loop to While Loop Reduction

13

 int factorial = 1;
 for (int i = 1; i <= n; i++) {
 factorial = factorial * i;
 }

 int factorial = 1;
 int i = 1;
 while (i <= n) {
 factorial = factorial * i;
 i++;
 }

When and How to use a For statement
● The for loop is best used when the number of times the loop will iterate is determined,

and can be expressed in relation to iteration variables.

● It can also favor readability, with initialization/condition/increment all defined at the
top of the loop.

● Iteration variable should not be modified in the loop body

● In that way, we maintain the good practice of “advancing” iteration at the end of the
loop body

● Some really bad practices:

● Modify the iteration variables in the loop body

● Write conditions with side effects

● Put statements not related to the iteration in the initialization
14

Manual Execution Example
a i condition

int a = 0 0

Int i = 0 0

i < 2 true

a = a + 2 2

i = i + 1 1

i < 2 true

a = a + 2 4

i = i + 1 2

i < 2 false

15

 int a = 0;
 for (int i = 0; i < 2; i = i+1) {
 a = a + 2;
 }

The ‘Continue’ Statement in a For Loop
● We have already discussed that the use of “loop breaking” statements such as continue and break

should be avoided

● It is nevertheless useful to know how these work

● The continue statement in a while loop makes the execution “skip” the remainder of the loop body,
i.e., to jump directly to loop condition.

● In a for loop, it makes the execution jump to the increment of the loop. Then, the condition is
evaluated.

16

 int factorial = 1;
 for (int i = 0; i <= n; i++) {
 if (i == 0) continue;
 factorial = factorial * i;
 }
 printf("%d\n", factorial);

It will skip the rest of the loop body, but
execute “i++” before checking the loop

condition (i <= n)

Sigma Notation (sequence summation)
A mathematical expression that represents the sum of terms of a sequence
within a certain range.

17

<latexit sha1_base64="PHTx5veBlb3dfXR6Pw5wP6mzZkc=">AAAB93icbZC7TsMwFIadcivlFi4bi0WFxFQlqAIWpAoWxiLRi9SGyHFPWqt2EtkOUojyLDAhYOM9eAHeBrd0gJZ/+nz+39I5f5BwprTjfFmlpeWV1bXyemVjc2t7x97da6s4lRRaNOax7AZEAWcRtDTTHLqJBCICDp1gfD3xOw8gFYujO50l4AkyjFjIKNFm5NsHfZUKP2f4EvPiPk8LTHzm21Wn5kyFF8GdQRXN1PTtz/4gpqmASFNOlOq5TqK9nEjNKIei0k8VJISOyRB6BiMiQHn5dPsCH4exxHoEePr+nc2JUCoTgckIokdq3psM//N6qQ4vvJxFSaohoiZivDDlWMd4UgIeMAlU88wAoZKZLTEdEUmoNlVVzPnu/LGL0D6tuWe1+m292riaFVFGh+gInSAXnaMGukFN1EIUPaJn9Ibercx6sl6s159oyZr92Ud/ZH18A77Xkn8=</latexit> uX

i=l

ai
<latexit sha1_base64="NegE++FbyNkf3xdOaUHKyBfDsGs=">AAACDHicbZDLSsNAFIYnXmu9RV26GSyCUihJKepGKLpxWcFeoA1hMp20QycXZk6EEvoK+jK6EnXnyhfwbZy0EbT1LIZvzv8fOOf3YsEVWNaXsbS8srq2Xtgobm5t7+yae/stFSWSsiaNRCQ7HlFM8JA1gYNgnVgyEniCtb3Rdaa375lUPArvYBwzJyCDkPucEtAt1zy9xMQVuKzfVJTtyQ9VM+r1I1CzTjJxzZJVsaaFF8HOoYTyarjmp56nScBCoIIo1bWtGJyUSOBUsEmxlygWEzoiA9bVGJKAKSednjTBx34kMQwZnv5/e1MSKDUOPO0JCAzVvJY1/9O6CfgXTsrDOAEWUm3Rmp8IDBHOksF9LhkFMdZAqOR6S0yHRBIKOr+iPt+eP3YRWtWKfVap3dZK9as8iAI6REfoBNnoHNXRDWqgJqLoET2jN/RuPBhPxovxOrMuGfnMAfpTxsc398OYXA==</latexit>

= al + al+1 + al+2 + · · ·+ au

Summation
index

Initial index

Summation
term

Final index

Summation Examples

18

<latexit sha1_base64="x2W3F/vitBsvUTdDwdoaHyNVxsc=">AAACDnicbVDLSsNAFJ3UV62vqEs3g0UQCiWprboRim5cVrAPaGOYTKft0JkkzEyEEvIP+jO6EnXnwh/wb5zELLT1wIEz95wLc64XMiqVZX0ZhaXlldW14nppY3Nre8fc3evIIBKYtHHAAtHzkCSM+qStqGKkFwqCuMdI15tepX73nghJA/9WzULicDT26YhipPTINSsDGXE3pvAC2sld3EhgJmEF1jRPNOuajXTWcM2yVbUywEVh56IMcrRc83MwDHDEia8wQ1L2bStUToyEopiRpDSIJAkRnqIx6WvpI06kE2elEng0CgRUEwKz9+9sjLiUM+7pDEdqIue9dPif14/U6NyJqR9GivhYR7Q3ihhUAUxvA4dUEKzYTAuEBdW/hHiCBMJKX7Ck69vzZRdFp1a1T6v1m3q5eZkfoggOwCE4BjY4A01wDVqgDTB4BM/gDbwbD8aT8WK8/kQLRr6zD/7A+PgGBDqWNQ==</latexit>

5X

i=1

i = 1 + 2 + 3 + 4 + 5 = 15

<latexit sha1_base64="vDdSvzeTvtNcXTOmSRlsnP+knuY=">AAACGnicbVDLSsNAFJ3UV62vqEs3g0UQhJK0wboRim5cVrAPaNMwmU7baScPZiZCCfkT/RldiXXnxr9xErPQ1rs4nHvPGZhz3JBRIQ3jSyusrW9sbhW3Szu7e/sH+uFRWwQRx6SFAxbwrosEYdQnLUklI92QE+S5jHTc2W2qdx4JFzTwH+Q8JLaHxj4dUYykOjl6vS8iz4mn8BoaySC2EjgdVNNF4QU0M6xmWMvQytSa4ehlo2JkA1eJmZMyyKfp6Iv+MMCRR3yJGRKiZxqhtGPEJcWMJKV+JEiI8AyNSU9RH3lE2HEWMIFno4BDOSEw2397Y+QJMfdc5fGQnIhlLT3+p/UiObqyY+qHkSQ+VhaljSIGZQDTnuCQcoIlmyuCMKfqlxBPEEdYqjZLKr65HHaVtKsV87Ji3Vvlxk1eRBGcgFNwDkxQBw1wB5qgBTB4Bq9gAT60J+1Fe9Pef6wFLX9zDP6M9vkNZSOaBQ==</latexit>

4X

j=0

j2 = 02 + 12 + 22 + 32 + 42 = 30

<latexit sha1_base64="qDnh2edVbo3RhO1hP7Rrq4XWQrY=">AAAB+3icbVDLSsNAFL3xWesr6kZwM1gEVyWpRd0IRTcuK9gHtGmYTCfttJMHMxOhhPgzuhJ151/4A/6N05qFtp7VufecC/ccL+ZMKsv6MpaWV1bX1gsbxc2t7Z1dc2+/KaNEENogEY9E28OSchbShmKK03YsKA48Tlve+Gaqtx6okCwK79Ukpk6AByHzGcFKr1zzsCuTwE1H6ApVsl5qZ2jUO9OD5Zolq2zNgBaJnZMS5Ki75me3H5EkoKEiHEvZsa1YOSkWihFOs2I3kTTGZIwHtKNpiAMqnXSWIEMnfiSQGlI0m397UxxIOQk87QmwGsp5bbr8T+skyr90UhbGiaIh0Rat+QlHKkLTIlCfCUoUn2iCiWD6S0SGWGCidF1FHd+eD7tImpWyfV6u3lVLteu8iAIcwTGcgg0XUINbqEMDCDzCM7zBu5EZT8aL8fpjXTLymwP4A+PjG29Akqk=</latexit>

1X

j=2

j3 = 0

<latexit sha1_base64="+hR9WDRE7dRoBWP1CFEhxRIIpEI=">AAAB/XicbVDLSgMxFM3UV62vUXe6CRbBVUmkqBuh6MZlBfuAdhwyaaaNzTxIMkIZBv0ZXYm68yf8Af/GTJ2Ftp7VufecC/ccLxZcaYS+rNLC4tLySnm1sra+sbllb++0VZRIylo0EpHsekQxwUPW0lwL1o0lI4EnWMcbX+Z6555JxaPwRk9i5gRkGHKfU6LNyrX3+ioJ3PQOnkOc3aYYoQzifEDItauohqaA8wQXpAoKNF37sz+IaBKwUFNBlOphFGsnJVJzKlhW6SeKxYSOyZD1DA1JwJSTTjNk8NCPJNQjBqfzb29KAqUmgWc8AdEjNavly/+0XqL9MyflYZxoFlJjMZqfCKgjmFcBB1wyqsXEEEIlN19COiKSUG0Kq5j4eDbsPGkf1/BJrX5drzYuiiLKYB8cgCOAwSlogCvQBC1AwSN4Bm/g3XqwnqwX6/XHWrKKm13wB9bHN7YXkrM=</latexit>

100X

j=1

1 = 100

Summations and their implementation

int sum = 0;
for (int i = l; i <= u; i++) {
 sum = sum + a(i);
}

19

Summations can be straightforwardly mapped into programs, using for loops

<latexit sha1_base64="PHTx5veBlb3dfXR6Pw5wP6mzZkc=">AAAB93icbZC7TsMwFIadcivlFi4bi0WFxFQlqAIWpAoWxiLRi9SGyHFPWqt2EtkOUojyLDAhYOM9eAHeBrd0gJZ/+nz+39I5f5BwprTjfFmlpeWV1bXyemVjc2t7x97da6s4lRRaNOax7AZEAWcRtDTTHLqJBCICDp1gfD3xOw8gFYujO50l4AkyjFjIKNFm5NsHfZUKP2f4EvPiPk8LTHzm21Wn5kyFF8GdQRXN1PTtz/4gpqmASFNOlOq5TqK9nEjNKIei0k8VJISOyRB6BiMiQHn5dPsCH4exxHoEePr+nc2JUCoTgckIokdq3psM//N6qQ4vvJxFSaohoiZivDDlWMd4UgIeMAlU88wAoZKZLTEdEUmoNlVVzPnu/LGL0D6tuWe1+m292riaFVFGh+gInSAXnaMGukFN1EIUPaJn9Ibercx6sl6s159oyZr92Ud/ZH18A77Xkn8=</latexit> uX

i=l

ai
expression that represents the term

Summations and their implementations - Example

int sum = 0;
for (int j = 0; j <= 4; j++) {
 sum = sum + (j * j);
}

20

<latexit sha1_base64="DJFGqov/iR1IP7+s8tTp1KBlHwI=">AAAB93icbZDLTsJAFIaneEO81cvOzURi4oq0hKgbE6Ibl5jIJYHSTIcDDEwvmZma1KbPoiuj7nwPX8C3ccAuFPxX35z/n+Sc34s4k8qyvozCyura+kZxs7S1vbO7Z+4ftGQYCwpNGvJQdDwigbMAmoopDp1IAPE9Dm1vejPz2w8gJAuDe5VE4PhkFLAho0TpkWse9WTsu+kEX2Er66e1DE/6VdcsWxVrLrwMdg5llKvhmp+9QUhjHwJFOZGya1uRclIiFKMcslIvlhAROiUj6GoMiA/SSefbZ/h0GAqsxoDn79/ZlPhSJr6nMz5RY7nozYb/ed1YDS+dlAVRrCCgOqK9YcyxCvGsBDxgAqjiiQZCBdNbYjomglClqyrp8+3FY5ehVa3Y55XaXa1cv86LKKJjdILOkI0uUB3dogZqIooe0TN6Q+9GYjwZL8brT7Rg5H8O0R8ZH9+8W5HU</latexit>

4X

j=0

j2

The return statement
● The return statement is used to communicate return values between programs

● When modularizing programs in functions (we’ll see that later), return statements are
used to communicate back the results of function computations

● In our simple programs, with just a main() routine, we often see a return 0 statement

● What happens if we put the return 0; statement elsewhere?

● Program exits as soon as the return statement is reached.

● What happens if we change the 0 integer constant by another one, like 1?

● As a convention, return 0 is used to indicate that the program has successfully
achieved its goal (returning a non-zero value will indicate that there has been a
problem in the computation)

21

The Comma Operator
● The comma operator is a binary operator with expressions as operands.

● In a comma expression of the form expr1, expr2

expr1 is evaluated first, and then expr2.

● The comma expression as a whole has the value and type of its right operand.

Example:

a = 0, b = 1

If b is an int, then this comma expression has value 1 and type int.

22

The Comma Operator

● The comma operator sometimes gets used in for statements.

● It allows multiple initializations and multiple processing of indices.

● For example, the code:

for(sum=0, i=1; i <= n; ++i)
 sum +=i;

can be used to compute the sum of integers from 1 to n.

23

The Comma Operator, a not-so-recommendable example

● Carrying the idea further, we can stuff the entire loop body into the for parentheses.

for(sum=0, i=1; i <= n; sum +=i, ++i);

● But not as:

for(sum=0, i=1; i <= n; ++i, sum +=i);

Because it would make ++i be evaluated first and sum would have a different value.

These uses of comma should be avoided.
Readability and clarity are seriously affected when abusing comma statements

24

