Introduction to Computer Science
Lecture 5

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Review

Increment and decrement operators

int a, b =0, c = 0;
a = ++b + ++c;
printf("%d %d S%d\n",
a = b++ + Cc++;
printf("%d %d %d\n",
a = ++b + c++;
printf("sd %d %d\n",
a=b—+ ——c;
printf("%sd %d %d\n",

c);

c);

What will this program print out?

Review

lteration

#include <stdio.h>

What does this program do?

Review

lteration

#include <stdio.h>
int main() {

int n;
scanf("%d", &n);

int factorial = 1;

int 1 = 1;

while (i <= n) {
factorial = factorial *x 1i;
i++;

}

printf("%d\n", factorial);

return 0;

Indent correctly.

Choose meaningful variable names.
Favor good forms of iteration.

Use comments!

Ompute
* T S the
* Tf?g f"?ctorlal f torlal
* T gum : natyp
he esUlt slS ece y sult Oal Ulnber n
rom e
Ay teq andapy . Prod
* Date. : John oo nds dd inpug CF (1 % 5 .
Vers ll 18th 2053 tput *n)

Today's topics

- Assignment operators

- Definite iteration (“for” loops)

- Computing sums and products of sequences
+ The return statement in main()

- The comma operator

Assignment operators

- In addition to =, there are other assignment operators, such as += and -=.

- An expression such as:
k = k + 2;

adds 2 to the (old) value of k, and assigns the result to k. Also, the expression as a
whole will have that value (the value of the right hand side expression).

- The expression:
k += 2;

accomplishes the same task!

Assignment operators

The different assignment operators have the following form:

variable op= expression
where op is an operator. This is equivalent to

variable = variable op (expression)

Assignment operators

= += -= = /: %: >>= <<=

Assignment operators - An Example

#include <stdio.h>

/* Computes the factorial of a natural number n.

* The factorial of n is the result of the product (1 * 2 * ... * n).
* The argument is received from standard input.

* The result is printed out on standard output.

b 3

* Author: John Doe

* Date: April 18th 2023

* Version: 0.1

*/

int main() {

int n;
scanf("%sd", &n);

int factorial = 1;

int 1 = 1;

while (i <= n) {
Gactorial *= i{]
i++;

by

printf("%d\n", factorial);

return 0;

The For Statement

It provides an additional mechanism to define iteration

It can be reduced to “while” loops (while loops are more expressive)

For loops correspond to a form of iteration known as “definite iteration”

 In definite iteration, the number of times that the loop body is executed is
determined

Very useful for certain iteration patterns, e.g., sequence summations and products.

In C, it has the following syntax:

for (exprl ; expr2; expr3) {
statements;
I3

The For Statement

for (exprl ; expr2; expr3$ {

statements; |

e,

For Loop Example

#include <stdio.h>

/* Computes the factorial of a natural number n.
The factorial of n is the result of the product (1 % 2 % ... * n).
The argument is received from standard input.
The result is printed out on standard output.

Author: John Doe
Date: April 18th 2023
*x Version: 0.1

*/

int main() {

X X X X X X

int n;

scanf("%d", &n);

int factorial = 1;

for (int i = 1; i <= n; i++) {
factorial = factorial x 1i;

}

printf("sd\n", factorial);

return 0;

11

For Loops vs While Loops

* For loops can also be written as while loops (while loops are more
expressive):

for (exprl ; expr2; expr3) {
statements;
I3

is equivalent to

expril;

while (expr2) {
statements;
expr3;

12

For Loop to While Loop Reduction

int factorial = 1;

int factorial = 1; int i = 1;
for (int i = 1; i <= n; i++) { while (i <= n) {

factorial = factorial x 1i; factorial = factorial x 1i;
¥ i++;

}

13

When and How to use a For statement

- The for loop is best used when the number of times the loop will iterate is determined,
and can be expressed in relation to iteration variables.

- It can also favor readability, with initialization/condition/increment all defined at the
top of the loop.

- Iteration variable should not be modified in the loop body

- In that way, we maintain the good practice of “advancing” iteration at the end of the
loop body

- Some really bad practices:

- Modify the iteration variables in the loop body

« Write conditions with side effects

« Put statements not related to the iteration in the initialization

14

Manual Execution Example

inta=0

Inti=0

= a + 2; a=a+?2

i=i+1

a=a+2

i=i+1

15

condition

true

true

false

The ‘Continue’ Statement in a For Loop

- We have already discussed that the use of “loop breaking” statements such as continue and break
should be avoided

« It is nevertheless useful to know how these work

- The continue statement in a while loop makes the execution “skip” the remainder of the loop body,
i.e., to jump directly to loop condition.

* In a for loop, it makes the execution jump to the increment of the loop. Then, the condition is
evaluated.

It will skip the rest of the loop body, but

int factorial = 1; execute “i++” before checking the loop
for (int i = 0; —,_1 <= n; i++) { condition (i <= n)
if (i == 0)]

factorial = facforla[* i
}

printf("sd\n", factorial);

16

Sigma Notation (sequence summation)

A mathematical expression that represents the sum of terms of a sequence
within a certain range.

Final index Summation
U

term

E A =ap+ a1+ ao + o+ a
i=I

Initial index
Summation

index

Summation Examples

5!
Zi:1+2 -3 +4+5=15
1=1

4
N2 =02 412 422 432 442 = 30
j=0

Summations and their implementation

Summations can be straightforwardly mapped into programs, using for loops

u

>

1=

int sum = 0;
for (int i = 1; i <= u; i++) {
sum = sum + a(i)}

) atl)

expression that represents the term

19

Summations and their implementations - Example

int sum = 0;
-2 for (int j = 0; j <= 4; j++) {
] sum = sum + (j * j);

L

S,
|
-

The return statement

- The return statement is used to communicate return values between programs

- When modularizing programs in functions (we’ll see that later), return statements are
used to communicate back the results of function computations

- In our simple programs, with just a main() routine, we often see a return 0 statement
- What happens if we put the return 0; statement elsewhere?
Program exits as soon as the return statement is reached.
- What happens if we change the 0 integer constant by another one, like 17

- As a convention, return 0 is used to indicate that the program has successfully
achieved its goal (returning a non-zero value will indicate that there has been a
problem in the computation)

21

The Comma Operator

- The comma operator is a binary operator with expressions as operands.

- In a comma expression of the form exprl, expr2
exprl is evaluated first, and then expr?2.

- The comma expression as a whole has the value and type of its right operand.

Example:

If b is an int, then this comma expression has value 1 and type int.

22

The Comma Operator

- The comma operator sometimes gets used in for statements.

- It allows multiple initializations and multiple processing of indices.

- For example, the code:

for (sum=0, 1i=1; 1 <= n; ++1)
sum +=1i;

can be used to compute the sum of integers from 1 to n.

23

The Comma Operator, a not-so-recommendable example

- Carrying the idea further, we can stuff the entire loop body into the for parentheses.

for (sum=0, i=1; 1 <= n; sum +=i, ++1);

- But not as:

for (sum=0, i=1; i <= n; ++i, sum +=1i);

Because it would make ++1i be evaluated first and sum would have a different value.

These uses of comma should be avoided.
Readability and clarity are seriously affected when abusing comma statements

24

