Introduction to Computer Science
Lecture 4

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Warmup

What is the effect of the following statement?

X =(y=2)+ (z = 3);

Today's topics

- Increment and decrement operators
- The || and && operators: short circuit evaluation
- The conditional operator ? :

- Break and continue statements

Increment and decrement operators

- The increment operator ++ and the decrement operator —— are operators.
Unlike + and — which are operators.
- They can be used as prefix and postfix.
- Suppose var is a variable of type int:
Both ++var and var++ are valid expressions
++var uses ++ as a prefix operator

- var++ uses ++ as a postfix operator

Increment and decrement operators

« Increment and decrement operators can only be applied to variables, not to
constants or ordinary expressions:

777++ onstants canngi_be—trcTemented x/
++(a x b — 1) / not be incremented x/
________"f

Increment and decrement operators

- Expressions ++1 and i++ have
they cause the value stored in i to be incremented by 1
the result of the evaluation of the expression

« ++i causes the stored value of i to be incremented, with the expression having as associated
value its , stored in i.

* i++ causes the stored value of i to be incremented too, but the expression has as associated
value its

int a, b;

int ¢ = 0;

a = ++C;

b = c++;

printf("sd %d %d", a, b, ++c) /* 1 1 3 is printed */

6

Increment and decrement operators

- ——1i and i-- work in a similar way

- The operators ++ and —- cause the value of a variable in memory to be
changed.

- We say that operators ++ and -- have : not only do these

operators , of a variable in
memory.

- Not all operators do this. For example, the expression (a + b) leaves the
values of variables a and b unchanged.

Increment and decrement operators

- Often, using ++/—-- in either prefix or postfix position will produce the same
result.

- |l.e., statements: ++1i; and i++; are often equivalentto i = 1 + 1;

- In simple situations, ++ and —- provide a short notation for the incrementing
and decrementing a variable.

- In other situations, careful attention must be paid as to whether prefix or
postfix position is desired.

Increment and decrement operators

Notice the difference between these two loops (assume i contains some
positive value):

while (i-—-) while (—1i)
printf("sd ",1i); printf("sd ",1i);

Short-Circuit Evaluation

- In the evaluation of operands of ¢& and | |, the evaluation process starts
from the left and stops as soon as the outcome TRUE or FALSE is known.

- Consider the evaluation of expression: exprl && expr?2
- If exprl has value zero/FALSE, then evaluation of expr2 does not occur.
- Consider the evaluation of expression: exprl || expr2

- If exprl has value non-zero/TRUE, then evaluation of expr2 does not occur.

10

Short-Circuit Riddle

int a =0, b=20, x;

x=0&& (a=b =777);
printf("sd %d %d\n'", a, b, X);
x =777 || (a = ++b);
printf("sd %d %d\n", a, b, X);

int a = 0,

(x = 0) &
printf("sd
(x = 777)

printf("sd

b =0, X;

(a=b =777);

%d %d\n', a, b, x);
| (a = ++b);

%d %d\n", a, b, x);

What do these programs print on the screen?

11

Short-Circuit Exercise (harder)

In the following code, assume that the values of i and j are not changed in
the body of the loop.

printf("Input two integers: ");

scanf("%d", &i);

scanf("%d", &j);

while (ixj<0 && ++i != 7 && j++ !'= 9) {
// do something...

I3

Can this ever lead to an infinite loop?

12

The Conditional Operator

The conditional operator 2: is a . It takes as operands three expressions:

exprl ? exprZ2 : expr3

where exprl, expr2 and expr3 are expressions. In the above construction,

e exprl is evaluated first.

e If exprl is non-zero (true), then expr2 is evaluated, and the result of the evaluation
is the value of the conditional expression.

o If exprl is zero (false), then expr3 is evaluated, and the result of this evaluation is
the value of the conditional expression.

13

The Conditional Operator

In many situation, the conditional operator enables us to write more concise
and readable programs:

P
I
<

is equivalent to X =(y<2z)?2y: z;

14

The Conditional Operator

int main() {
int input;
printf("How many cherries do you want?\n");
scanf("%sd", &input);

printf("So you want %d cherr%s.\n", input, (input == 1) ? "y" : "ies");
return 0,

15

The break and continue statements

- Normally, loops can only exit when the loop condition is false.
- Also, the whole body of the loop is executed at each iteration.

- break and continue provide ways of exiting a loop or jumping to the condition
of the loop directly from any place within the loop body.

- A break causes the innermost enclosing loop to be exited immediately.

- A continue makes execution jump to the loop condition.

16

Break Statement. An Example

A typical use of break. What would otherwise be an infinite loop is made to
terminate upon a given condition tested by the if expression:

while (1) {
scanf ("&d", &x);
if (x < 0)
break; /* exit loop if x is negative %/

orintf("sd", x*x);
I3

/* break jumps here x/

17

Break Statement. Another Example

printf("Please enter a number between @ and 100\n");
while (1) {
scanf("%d", &x);
if (x >= 0 && x <= 100)
break;
printf("Sorry. Please enter a number between @ and 100\n");

18

The continue statement

The continue statement stops the current iteration, and causes the next
iteration of the loop to begin immediately.

- |t can only be used inside iteration statements.

int i = 0;
while (i < TOTAL) {
c = getchar();
if (c >= '0' & c <= '9"')
continue;
/* process other characters x/
++1;

19

Ending Remarks

- We covered a number of important topics today:
« C expressions have a value and may have side effects

- Some widely used operators (e.g., increment/decrement) have side effects, so we must be careful
when using them in expressions

* (in particular, when used as part of expressions with short-circuit operators)
- Some control statements allow us to alter the normal control flow in loops (break, continue)

- They should usually be avoided, as they lead to programs with poor structure and difficult to
reason about

- In some situations, they can help us write cleaner and more readable code

- But this is rare!

20

