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Warmup

What is the effect of the following statement?

X =(y=2)+ (z = 3);




Today's topics

- Increment and decrement operators
- The || and && operators: short circuit evaluation
- The conditional operator ? :

- Break and continue statements



Increment and decrement operators

- The increment operator ++ and the decrement operator —— are operators.
Unlike + and — which are operators.
- They can be used as prefix and postfix.
- Suppose var is a variable of type int:
Both ++var and var++ are valid expressions
++var uses ++ as a prefix operator

- var++ uses ++ as a postfix operator



Increment and decrement operators

« Increment and decrement operators can only be applied to variables, not to
constants or ordinary expressions:

777++ onstants canngi_be—trcTemented x/
++(a x b — 1) / not be incremented x/
________"f




Increment and decrement operators

- Expressions ++1 and i++ have
they cause the value stored in i to be incremented by 1
the result of the evaluation of the expression

« ++i causes the stored value of i to be incremented, with the expression having as associated
value its , stored in i.

* i++ causes the stored value of i to be incremented too, but the expression has as associated
value its

int a, b;

int ¢ = 0;

a = ++C;

b = c++;

printf("sd %d %d", a, b, ++c) /* 1 1 3 is printed */
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Increment and decrement operators

- ——1i and i-- work in a similar way

- The operators ++ and —- cause the value of a variable in memory to be
changed.

- We say that operators ++ and -- have : not only do these

operators , of a variable in
memory.

- Not all operators do this. For example, the expression (a + b) leaves the
values of variables a and b unchanged.



Increment and decrement operators

- Often, using ++/—-- in either prefix or postfix position will produce the same
result.

- |l.e., statements: ++1i; and i++; are often equivalentto i = 1 + 1;

- In simple situations, ++ and —- provide a short notation for the incrementing
and decrementing a variable.

- In other situations, careful attention must be paid as to whether prefix or
postfix position is desired.



Increment and decrement operators

Notice the difference between these two loops (assume i contains some
positive value):

while (i-—-) while (—1i)
printf("sd ",1i); printf("sd ",1i);




Short-Circuit Evaluation

- In the evaluation of operands of ¢& and | |, the evaluation process starts
from the left and stops as soon as the outcome TRUE or FALSE is known.

- Consider the evaluation of expression: exprl && expr?2
- If exprl has value zero/FALSE, then evaluation of expr2 does not occur.
- Consider the evaluation of expression: exprl || expr2

- If exprl has value non-zero/TRUE, then evaluation of expr2 does not occur.
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Short-Circuit Riddle

int a =0, b=20, x;

x=0&& (a=b =777);
printf("sd %d %d\n'", a, b, X);
x =777 || (a = ++b);
printf("sd %d %d\n", a, b, X);

int a = 0,

(x = 0) &
printf("sd
(x = 777)

printf("sd

b =0, X;

(a=b =777);

%d %d\n', a, b, x);
| (a = ++b);

%d %d\n", a, b, x);

What do these programs print on the screen?
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Short-Circuit Exercise (harder)

In the following code, assume that the values of i and j are not changed in
the body of the loop.

printf("Input two integers: ");

scanf("%d", &i);

scanf("%d", &j);

while (ixj<0 && ++i != 7 && j++ !'= 9) {
// do something...

I3

Can this ever lead to an infinite loop?
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The Conditional Operator

The conditional operator 2: is a . It takes as operands three expressions:

exprl ? exprZ2 : expr3

where exprl, expr2 and expr3 are expressions. In the above construction,

e exprl is evaluated first.

e If exprl is non-zero (true), then expr2 is evaluated, and the result of the evaluation
is the value of the conditional expression.

o If exprl is zero (false), then expr3 is evaluated, and the result of this evaluation is
the value of the conditional expression.
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The Conditional Operator

In many situation, the conditional operator enables us to write more concise
and readable programs:

P
I
<

is equivalent to X =(y<2z)?2y: z;
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The Conditional Operator

int main() {
int input;
printf("How many cherries do you want?\n");
scanf("%sd", &input);

printf("So you want %d cherr%s.\n", input, (input == 1) ? "y" : "ies");
return 0,
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The break and continue statements

- Normally, loops can only exit when the loop condition is false.
- Also, the whole body of the loop is executed at each iteration.

- break and continue provide ways of exiting a loop or jumping to the condition
of the loop directly from any place within the loop body.

- A break causes the innermost enclosing loop to be exited immediately.

- A continue makes execution jump to the loop condition.
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Break Statement. An Example

A typical use of break. What would otherwise be an infinite loop is made to
terminate upon a given condition tested by the if expression:

while (1) {
scanf ("&d", &x);
if (x < 0)
break; /* exit loop if x is negative %/

orintf("sd", x*x);
I3

/* break jumps here x/
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Break Statement. Another Example

printf("Please enter a number between @ and 100\n");
while (1) {
scanf("%d", &x);
if (x >= 0 && x <= 100)
break;
printf("Sorry. Please enter a number between @ and 100\n");
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The continue statement

The continue statement stops the current iteration, and causes the next
iteration of the loop to begin immediately.

- |t can only be used inside iteration statements.

int i = 0;
while (i < TOTAL) {
c = getchar();
if (c >= '0' & c <= '9"')
continue;
/* process other characters x/
++1;
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Ending Remarks

- We covered a number of important topics today:
« C expressions have a value and may have side effects

- Some widely used operators (e.g., increment/decrement) have side effects, so we must be careful
when using them in expressions

* (in particular, when used as part of expressions with short-circuit operators)
- Some control statements allow us to alter the normal control flow in loops (break, continue)

- They should usually be avoided, as they lead to programs with poor structure and difficult to
reason about

- In some situations, they can help us write cleaner and more readable code

- But this is rare!
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