
Introduction to Computer Science – Winter 2022 
Lecture 4

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 4

Warmup

What is the effect of the following statement?

2

x = (y = 2) + (z = 3);

Today's topics

● Increment and decrement operators

● The || and && operators: short circuit evaluation

● The conditional operator ? :

● Break and continue statements

3

Increment and decrement operators

● The increment operator ++ and the decrement operator -- are unary operators.

● Unlike + and – which are binary operators.

● They can be used as prefix and postfix.

● Suppose var is a variable of type int:

● Both ++var and var++ are valid expressions

● ++var uses ++ as a prefix operator

● var++ uses ++ as a postfix operator

4

Increment and decrement operators

● Increment and decrement operators can only be applied to variables, not to
constants or ordinary expressions:

5

777++ /* constants cannot be incremented */

++(a * b – 1) /* expressions cannot be incremented */

Increment and decrement operators
● Expressions ++i and i++ have an effect and a value

● Effect: they cause the value stored in i to be incremented by 1

● Value: the result of the evaluation of the expression

● ++i causes the stored value of i to be incremented, with the expression having as associated
value its new (incremented) value, stored in i.

● i++ causes the stored value of i to be incremented too, but the expression has as associated
value its original value of i (prior to the increment).

6

int a, b;

int c = 0;

a = ++c;

b = c++; 
printf("%d %d %d", a, b, ++c) /* 1 1 3 is printed */

Increment and decrement operators

● --i and i-- work in a similar way

● The operators ++ and -- cause the value of a variable in memory to be
changed.

● We say that operators ++ and -- have side effects: not only do these
operators yield a value, they also change the stored value of a variable in
memory.

● Not all operators do this. For example, the expression (a + b) leaves the
values of variables a and b unchanged.

7

Increment and decrement operators

● Often, using ++/-- in either prefix or postfix position will produce the same
result.

● I.e., statements: ++i; and i++; are often equivalent to i = i + 1;

● ...unless they are used inside a condition or a greater expression!

● In simple situations, ++ and -- provide a short notation for the incrementing
and decrementing a variable.

● In other situations, careful attention must be paid as to whether prefix or
postfix position is desired.

8

Increment and decrement operators

Notice the difference between these two loops (assume i contains some
positive value):

9

while (—-i)

 printf("%d ",i);

while (i--)

 printf("%d ",i);

Short-Circuit Evaluation

● In the evaluation of operands of && and ||, the evaluation process starts
from the left and stops as soon as the outcome TRUE or FALSE is known.

● Consider the evaluation of expression: expr1 && expr2

● If expr1 has value zero/FALSE, then evaluation of expr2 does not occur.

● Consider the evaluation of expression: expr1 || expr2

● If expr1 has value non-zero/TRUE, then evaluation of expr2 does not occur.

10

Short-Circuit Riddle

What do these programs print on the screen?

11

int a = 0, b = 0, x;

x = 0 && (a = b = 777);

printf("%d %d %d\n", a, b, x);

x = 777 || (a = ++b);

printf("%d %d %d\n", a, b, x);

int a = 0, b = 0, x;

(x = 0) && (a = b = 777);

printf("%d %d %d\n", a, b, x);

(x = 777) || (a = ++b);

printf("%d %d %d\n", a, b, x);

Short-Circuit Exercise (harder)

In the following code, assume that the values of i and j are not changed in
the body of the loop.

12

printf("Input two integers: ");

scanf("%d", &i);

scanf("%d", &j);

while (i*j<0 && ++i != 7 && j++ != 9) {

 // do something...

}

Can this ever lead to an infinite loop?

The Conditional Operator

13

The conditional operator ?: is a ternary operator. It takes as operands three expressions:

expr1 ? expr2 : expr3

where expr1, expr2 and expr3 are expressions. In the above construction,

• expr1 is evaluated first.

• If expr1 is non-zero (true), then expr2 is evaluated, and the result of the evaluation
is the value of the conditional expression.

• If expr1 is zero (false), then expr3 is evaluated, and the result of this evaluation is
the value of the conditional expression.

The Conditional Operator

14

if (y < z)

 x = y;

else

 x = z;

x = (y < z)? y : z;

In many situation, the conditional operator enables us to write more concise
and readable programs:

is equivalent to

The Conditional Operator

15

int main() {

 int input;

 printf("How many cherries do you want?\n");

 scanf("%d", &input);

 printf("So you want %d cherr%s.\n", input, (input == 1) ? "y" : "ies");

 return 0;

}

The break and continue statements
● Normally, loops can only exit when the loop condition is false.

● Also, the whole body of the loop is executed at each iteration.

● break and continue provide ways of exiting a loop or jumping to the condition
of the loop directly from any place within the loop body.

● break:

● A break causes the innermost enclosing loop to be exited immediately.

● continue:

● A continue makes execution jump to the loop condition.	

16

Break Statement. An Example

A typical use of break. What would otherwise be an infinite loop is made to
terminate upon a given condition tested by the if expression:

17

while (1) {

 scanf("&d", &x);

 if (x < 0)

 break;

 printf("%d", x*x);

}

/* exit loop if x is negative */

/* break jumps here */

Break Statement. Another Example

18

printf("Please enter a number between 0 and 100\n");

while (1) {

 scanf("%d", &x);

 if (x >= 0 && x <= 100)

 break;

 printf("Sorry. Please enter a number between 0 and 100\n");

}

The continue statement

19

The continue statement stops the current iteration, and causes the next
iteration of the loop to begin immediately.

- It can only be used inside iteration statements.

int i = 0;

while (i < TOTAL) {

 c = getchar();

 if (c >= '0' && c <= '9')

 continue;

 /* process other characters */

 ++i;

}

Ending Remarks
● We covered a number of important topics today:

● C expressions have a value and may have side effects

● Some widely used operators (e.g., increment/decrement) have side effects, so we must be careful
when using them in expressions

● (in particular, when used as part of expressions with short-circuit operators)

● Some control statements allow us to alter the normal control flow in loops (break, continue)

● They should usually be avoided, as they lead to programs with poor structure and difficult to
reason about

● In some situations, they can help us write cleaner and more readable code

● But this is rare!

20

