
Introduction to Computer Science – Winter 2022 
Lecture 3Introduction to Computer Science 

Lecture 3

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Today's Topics

● logic operators

● interval and set conditions

● while statements

● boolean values as integers

● do-while

2

Logic Operators

Logic operators allow us to combine conditions:

● EXPR || EXPR : logical 'or' of two expressions

● EXPR && EXPR : logical 'and' of two expressions

These conditions can be used in the context of conditional statements and loops.

 
Logic operators have less priority than the comparison operators, so you can write the
following without parentheses:

● a == 10 || b >= 5 || c < 50

● a == 10 && b >= 5 && c < 50

3

Interval Conditions
To express that some expression EXPR's value belongs to an interval [a,b], you
need to write two comparison expressions:

● EXPR is greater than or equal to a: EXPR >= a

● EXPR is less than or equal to b: EXPR <= b

Then you combine both into a single condition with the logical 'and' operator:

● EXPR >= a && EXPR <= b

 
expression (a <= EXPR <= b) is syntactically correct in C, but it does not have the
meaning one usually associates with such interval conditions.

4

Example

main() { 
 int age; 
 scanf("%d", &age); 
 
 // check if user age belongs to range [18,60] 
 if (age >= 18 && age <= 60) 
 printf("You can apply to this job!\n"); 
 else 
 printf("Sorry, you are too young or too old.\n"); 
}

5

Check if some value belongs to a set of values

If the set of options is very small, you can enumerate its elements and check
whether a given value is equal to the first one, or equal to the second one, etc.

Example:

6

main() { 
 int age; 
 scanf("%d", &age); 
 
 // check if user age belongs to set {20,30,40} 
 if (age == 20 || age == 30 || age == 40) 
 printf("We have a special gift for you!\n"); 
}

The while statement
while (CONDITION)

 [STATEMENT]

[NEXT STATEMENTS]

...

while (CONDITION) {

 [STATEMENTS] 
}

[NEXT STATEMENTS]

… 7

while statement example
main() {

 int count;

 printf("Please enter a number to do a countdown.\n");

 scanf("%d", &count); 

 while (count >= 0){

 printf("%d.\n", count);

 count = count - 1;

 }

}

8

While Statement: Things to Care About

● A while statement repeats a sequence of statements (the "body" of the while
loop) while some condition is true.

● It stops repeating when the condition is false.

● Condition is checked when the while statement is first reached, and after the
whole body is executed, before it is repeated again.

● If you write a while statement and the condition is always true, your program will
never stop; then you need to use CTRL+c to terminate it (or use the kill
command).

9

Manual Execution with while
i a i < 4 i % 2 == 0
0 - - -
0 0 - -
0 0 true -
0 0 - true
0 1 - -
1 1 - -
1 1 true -
1 1 - false
1 0 - -
2 0 - -
2 0 true -
2 0 - true
2 1 - -
3 1 - -
3 1 true -
3 1 - false
3 0 - -
4 0 - -
4 0 false -

10

int i = 0;

int a = 0;

while (i < 4) {

 if (i % 2 == 0)

 a = a + 1;

 else

 a = a - 1;

 i = i + 1;

}

How Conditions are Evaluated
● The C language uses integers for boolean testing. What does this mean?

● 0 represents "false", and 1 represents "true".

● example: (1 > 0) evaluates to 1

● example: (1 != 1) has a value of 0

● Consider (a <= EXPR <= b)

● Read as ((a <= EXPR) <= b), the inner expression is evaluated first as a boolean value
0 or 1.

● Then, evaluation continues with either (0 <= b) or (1 <= b)

● This means something, but probably not what you want!

11

How Conditions are Evaluated

● In a condition, 0 is interpreted as false and anything non-zero is interpreted
as true.

● That is: if(0) is always false, if(1) is always true, if(-2) too, etc.

● Same for while(1).

● Use gcc -Wall to detect possible problems (tcc is not good enough):

12

Conditions have values, continued
 Let us read the manual of GCC (man gcc , does not work in JSLinux):

13

GCC options on the command line

GCC's most important options for us are:

-o name: specifies a name for the executable file generated;
by default it’s a.out

-Wall: enable all warnings detection

-Werror: make all warnings into errors

You can combine all of them:

gcc main.c -o program -Wall -Werror

14

TCCs

● The TCC compiler has a "compile and execute" mode activated with the -run
flag.

● Useful in the typical case in which we want to quickly check the behavior of
our program.

● Usually we do not care about warnings in that case, because we just want
to see the program's output, except if there is an error. Hence we can use
the -w flag to suppress any warning:

 tcc -w -run main.c

15

Another Useful Warning

Another common error is to confuse assignment (=) with equality testing (==). For instance, the
following program compiles but it does not do what one would intuitively expect:

main() { 
 int a = 10; 
 if (a = 20) 
 printf("You should not see this.\n"); 
} 

This is because assignments a=b are expressions that also have an associated value

The if statement takes assignment a=20 (value 20, non-zero) as a true condition!

16

The Logical NOT Operator

Aside the binary logical operators || and && ("or" and "and"), we also have the
"not" operator, that changes the truth value of some expression:

if(!(a > b)) ...

It is very useful to express while loop conditions as a negated "until" condition:

while (!(a == 0)) // iterate until a == 0

17

The do-while loop

The do-while statement is similar to the
while statement, except that the loop body
is executed before the condition is checked
for the first time.

Syntax:

do { 
 STATEMENT 
} while (CONDITION);

18

Using do-while to validate user input

● You can put a scanf() statement in the do-while loop body and repeat it until
the input value fulfills some condition.

● For instance, asking for a non-negative integer:

do {

 scanf("%d", &x);

} while (!(x >= 0)); // repeat until x is non-negative

19

Equivalence

is equivalent to:

20

Remarks

● Do-while loops are sometimes useful if you want the code to output some sort of
menu to a screen so that the menu is guaranteed to show once.

● If there is no need to use a do-while loop, then a regular while loop is preferred.

21

While loop examples

The following program uses a while loop to repeat a message a number of
times:

22

#include <stdio.h>

int main() {

 int i = 0;

 while (i < 10) {

 printf("tick...\n");

 i = i + 1;

 }

 printf("BOOOOOM!\n");

}

While loop examples
Let’s compute an integer summation using a while loop:

23

#include <stdio.h>

int main() {

 int i = 0;

 int sum = 0;

 int n;

 scanf("%d", &n);

 while (i <= n) {

 sum = sum + i;

 i = i + 1;

 }

 printf("The sum from i = 0 to %d of i is %d\n", n, sum);

}

While loop examples

Let’s compute the average of the first n even (natural) numbers:

24

#include <stdio.h>

int main() {

 int n;

 scanf("%d", &n);

 int i = 0;

 int sum = 0;

 while (i < n) {

 sum = sum + 2*i;

 i = i + 1;

 }

 printf("%d\n", sum / n);

}

While loop examples

Let’s write a more challenging program, least common multiple:

25

#include <stdio.h>

int main() {

 int n, m;

 scanf("%d", &n);

 scanf("%d", &m);

 int i = n;

 while ((i % n != 0) || (i % m != 0)) {

 i = i + 1;

 }

 printf("least common multiple of %d and %d is: %d\n", n, m, i);

}

Final remarks: Recommendations for Loops

● Make the loop condition clear, with regards to the specification of the problem.

● If the problem specifies an amount of repeats of the loop, make the loop
condition refer to the repeats.

● If the problem is given as a bound condition, put the bound condition in the
loop condition.

● In general, try to make your code the most transparent possible translation of
the problem specification. Avoid simplifying conditions in an effort to make
your program more efficient.

● Program readability is an important issue too!

26

