Introduction to Computer Science
Lecture 2

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Running . /hello (1/3): typing the program name

CPU
Register file
PC ALU
T System bus Memory bus
L A /O l » Main | “hello”
Bus interface bridge memory

Expansion slots for

other devices such

uUsSB Graphics Disk as network adapters
controller adapter controller

T I !
Mouse Keyboard Display
User

types
“hello”)

]
L

Running . /hello (2/3): program copied from disk to memory

CPU

Register file

PC ALU

System bus Memory bus

(L l H " ”
/0 > Main hello, world\n

 bridge memory| ., ... code

11

Expansion slots for
other devices such

UsSB Graphics Disk as network adapters
controller adapter controller

T ' 1

Mouse Keyboard Display C
Dis]

Bus interface

hello executable
stored on disk

Running . /hello (3/3): execute program from memory

CPU
Register file
PC ALU
‘T‘ wm bus Memory bus
) | <1 o l Main | “hello, world\n”
Bus interface bridge memory| ; .11, code
10
Expansion slots for
other devices such
USB Graphics Disk as network adapters
controller adapter controller
A
Mouse Keyboard Display Ml

hello executable
“hello, world\n” W stored on disk

Programs and Processes

- Once a program is copied into the main memory of the computer and ready to be
executed, we no longer call the program a program but a process

- A single program stored on disk, if executed several times, can create several
processes running at the same time

- Commands ps and jobs show all current processes in terminal.

- Command ps aux shows all the processes currently running in the system (many
of them are from the operating system itself)

- Each process has a number (PID, process ID). You can try and terminate some
process using the kill command followed by the PID of the corresponding process.

- If this is not enough (for instance, to terminate vi), use kill -9.

5

Controlling processes in the Linux terminal

- CTRL+C: terminates process that is currently executing.
- CTRL+7Z: suspends (pauses) current process. After that:

- command £g resumes program execution in
foreground

- command bg resumes program execution in
background

- ps and jobs show the processes of the current terminal

- try with the commands sleep and watch

in background

Back to C programming: putchar ()

- putchar () is a function similarto printf () but instead of taking a string
constant, it takes a character constant

- Character constants are written 'c' where ¢ is some character
- Careful: "c" is a string constant (a string with only one character)
- Examples:

« putchar('a');

« putchar('\n");

Use of printf ()

* |
Input: printf("Color %s, Number % Float I

’/‘/// / 721"" "red", 123456, 3.14);

Output: Color red, Number 123456, Float 3.14

. 3d, %i:prints an integer

. s£: prints a floating-point number
. 9s: prints a string

. gc: prints a character

. 2% prints one % character

. \n prints a newline

Comments

- A comment is some text placed in the source code, that is ignored during the
compilation process (not treated as normal source code)

- Useful to provide explanations/descriptions for developers
- Single-line comments start with the // characters until the end of the line

« Multi-line comments start with /* and end with */

Exercise: what is the output of these programs?

main () {
/* printf ("Ho"); */

main () { printf ("\nCho") ;

printf ("GTI") ; /* printf("la"); */ A one-liner:

putchar ('o');
/* printf ("STU"); */
* . tf "! " H * . '
/* printf ("!\n"); */ main () {printf ("Hey\n") ;}

printf ("IT\n"); printf ("se W");

} /* printf ("man"); */

printf ("isel");

putchar ('y');

printf ("\n");

10

Variables

A variable is the combination of the following:
- a name (or identifier) that you choose
- an address in the memory of the computer
- a value stored at that address
- value may change during program execution

- a type, that specifies how much space this value occupies in
memory, and how to interpret this value (signed/unsigned...)

To use a variable, you need first to declare it.

11

Variable declaration

A variable declaration is a statement of the following shape:

type name;
or:

type name = value;

The name should start with a lowercase letter. It may contain uppercase letters,
numbers, underscore symbols. For instance:

a, b, ¢, x10, state, tagName, 1inputStr,

12

Types

For now let us consider two types of the C language: int and char.

- The int type uses 4 bytes in memory, it holds values from -2,147,483,648 to
+2,147,483,64 (if considered signed) or from 0 to 4,294,967,295 (if considered
unsigned).

- The char type uses 1 byte in memory, it holds values from -128 to 127 or from
from 0 to 255.

main () {
int time = 100;
char ¢ = 50;

13

Assignments: changing a variable's value

An assignment is a statement of the form:
lvalue = expression;
Where 1value (as in "left value") can be the name of a variable, but cannot be a constant.

The assignment changes the value of the 1value variable to the value of expression

main () |
int time = 100;
printf ("%d", time); // will print 100
time = 60;

printf ("%d", time); // will print 60

14

Assignments from a constant or from a variable

main () |

int time = 100;

int another time = 300;

printf ("%d", time); // will print 100

time = 60; // assignment from a constant
printf ("%d", time); // will print 60

time = another time; // assignment from a variable

printf ("%d", time); // will print 300

15

A little riddle

main () {
int time = 100;
int another time = 300;
time = 60;
another time = 150;

time = another time;

printf ("%d", time); // will print...

16

About assignments

- the assignment syntax is not symmetric: value gets copied from right to left
+ You may find in some C code some assignments of the form:
a = Db = 10;

- ltis equivalenttodoingb = 10; thena = b;.

17

EXxpressions

An expression can be built from:

- constants

- variables

- operators, including arithmetic and logic operators

- function calls (we will see them later)

18

Expression examples

« 10
rat
- varName
« 10 + 20
(30 * 5) / (44 - 24)
(a *5) / (44 - b) + 'c¢'
- 45 % 10
- operators +, —, * (multiplication), / (division), $ (modulo) are arithmetic operators

- An expression has a value, calculated from its constants, variables and operators.

19

The Division (/) and Modulo (%) operators

- An expression of the form x / vy has as value the quotient of x by v.
100 / 10 :valueis 10
100 / 15:valueis6
10 / 100 :valueinO
- An expression of the form x % vy has value the remainder of the division of x by v:
100 % 15:valueis 10

123 % 10 :valueis 3

20

Riddle

main () {
int x = 100;
int y = 300;
x =y + 200;
y = x / 5;
X =X + vy

printf ("%d", x); // will print... ?

21

Riddle

main () {
int a = 5;
int b = 7;
int ¢ = 8;
a =Db - c;
b =a-c¢c;
c =a * b;

printf ("%d", c¢); // will print... ?

22

Expressions in printf arguments

int x = 100;
int y = 300;
y =y / 5;

x = x + 40;

printf ("%d", x + y - 100); // will print... ?

23

scanf ()

- the scanf () function makes our programs pause to get user input
- The user types a value and presses ENTER to confirm.

- The received value is stored in a variable

- like printf (), it works with a string argument that contains placeholders, but it is a little
trickier

- here is the syntax that we will use to ask for an integer and store it in the variable x:
scanf ("sd", &x);

- Notice the & before the variable name

24

scanf () In action

main () {
int age;
printf ("Please enter your age.\n");
scanf ("sd", &age);

printf ("Your age is %d\n", age);

25

scanf () in action, again

main () {
int age, year;

printf ("Please enter your age.\n");

scanf ("%d", &age);

printf ("Please enter the current year.\n");

scanf ("%d", &year);

printf ("Your were born in the year %$d\n", year-age);

26

Comparison operators

Comparison operators enable to compare the values of two expressions:

EXPR > EXPR

EXPR >= EXPR

EXPR < EXPR

EXPR <= EXPR

EXPR == EXPR

EXPR != EXPR

These boolean expressions, or conditions, can be used in the context of conditional
statements and loops.

27

If statement

if (CONDITION)

[STATEMENT] True

execute if statements block

if(condition)

[NEXT STATEMENTS]

if (CONDITION) {

[STATEMENTS] Next statement <€

}

[NEXT STATEMENTS]

28

If statement example

main () {
int age;
printf ("Please enter your age.\n");
scanf ("%d", &age);
i1f (age < 18)
printf ("You are minor.\n");

printf ("Your age is %d.\n", age);

29

iIf-else statement

if (CONDITION)
[STATEMENT]

else
[STATEMENT]

[NEXT STATEMENTS]

if (CONDITION) {
[STATEMENTS]
} else {
[STATEMENTS]
}

[NEXT STATEMENTS]

If expression is FALSE——

l

Body of else

30

Boolean
expression

—If expression is TRUE

l

Body of if

Statement
after if

If-else statement example

main () {

int age;
printf ("Please enter your age.\n");
scanf ("%d", &age);
if (age < 18)

printf ("You are minor.\n");
else

printf ("You are major.\n");

printf ("Your age is %d.\n", age);

31

Favor if-else over consecutive if’s

// not great: // much better:
if (age < 18) if (age < 18)

printf ("You are minor.\n"); printf ("You are minor.\n");
if (age >= 18) else

printf ("You are major.\n"); printf ("You are major.\n");

printf ("Your age is %d.\n", age); printf ("Your age is %d.\n", age);

32

Lecture Summary

- Linux processes

- Variables, assignment

- putchar () and printf ()
« scanft ()

- Arithmetic operators

- Comparison operators

- if and if-else statements

33

