
Introduction to Computer Science 
Lecture 2

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Running ./hello (1/3): typing the program name

2

Running ./hello (2/3): program copied from disk to memory

3

Running ./hello (3/3): execute program from memory

4

Programs and Processes
● Once a program is copied into the main memory of the computer and ready to be

executed, we no longer call the program a program but a process

● A single program stored on disk, if executed several times, can create several
processes running at the same time

● Commands ps and jobs show all current processes in terminal.

● Command ps aux shows all the processes currently running in the system (many
of them are from the operating system itself)

● Each process has a number (PID, process ID). You can try and terminate some
process using the kill command followed by the PID of the corresponding process.

● If this is not enough (for instance, to terminate vi), use kill -9.
5

Controlling processes in the Linux terminal

● CTRL+C: terminates process that is currently executing.

● CTRL+Z: suspends (pauses) current process. After that:

● command fg resumes program execution in
foreground

● command bg resumes program execution in
background

● ps and jobs show the processes of the current terminal

● try with the commands sleep and watch

6

Back to C programming: putchar()

● putchar() is a function similar to printf() but instead of taking a string
constant, it takes a character constant

● Character constants are written 'c' where c is some character

● Careful: "c" is a string constant (a string with only one character)

● Examples:

● putchar('a');

● putchar('\n');

7

Use of printf()

● %d, %i: prints an integer

● %f: prints a floating-point number

● %s: prints a string

● %c: prints a character

● %%: prints one % character

● \n prints a newline

8

Comments

● A comment is some text placed in the source code, that is ignored during the
compilation process (not treated as normal source code)

● Useful to provide explanations/descriptions for developers

● Single-line comments start with the // characters until the end of the line

● Multi-line comments start with /* and end with */

9

Exercise: what is the output of these programs?

main(){

 printf("GTI");

 /* printf("STU"); */

 printf("IT\n");

}

A one-liner:

main(){

 /* printf("Ho"); */

 printf("\nCho");

 /* printf("la"); */

 putchar('o');

 /* printf("!\n"); */

 printf("se W");

 /* printf("man"); */

 printf("isel");

 putchar('y');

 printf("\n");

}
10

main(){printf("Hey\n");}

Variables

A variable is the combination of the following:

● a name (or identifier) that you choose

● an address in the memory of the computer

● a value stored at that address

● value may change during program execution

● a type, that specifies how much space this value occupies in
memory, and how to interpret this value (signed/unsigned...)

To use a variable, you need first to declare it.

11

Variable declaration

A variable declaration is a statement of the following shape:

type name;

or:

type name = value;

The name should start with a lowercase letter. It may contain uppercase letters,
numbers, underscore symbols. For instance:

a, b, c, x10, state, tagName, inputStr, ...

12

Types
For now let us consider two types of the C language: int and char.

● The int type uses 4 bytes in memory, it holds values from −2,147,483,648 to
+2,147,483,64 (if considered signed) or from 0 to 4,294,967,295 (if considered
unsigned).

● The char type uses 1 byte in memory, it holds values from -128 to 127 or from
from 0 to 255.

13

main() { 
 int time = 100; 
 char c = 50; 
 ... 
}

Assignments: changing a variable's value
An assignment is a statement of the form:

 lvalue = expression;

Where lvalue (as in "left value") can be the name of a variable, but cannot be a constant.

The assignment changes the value of the lvalue variable to the value of expression

14

main() {

 int time = 100;

 printf("%d", time); // will print 100

 time = 60;

 printf("%d", time); // will print 60

}

Assignments from a constant or from a variable

main() {

 int time = 100;

 int another_time = 300;

 printf("%d", time); // will print 100

 time = 60; // assignment from a constant

 printf("%d", time); // will print 60

 time = another_time; // assignment from a variable

 printf("%d", time); // will print 300

}

15

A little riddle

main(){

 int time = 100;

 int another_time = 300;

 time = 60;

 another_time = 150;

 time = another_time;

 printf("%d", time); // will print... ?

}

16

About assignments

● the assignment syntax is not symmetric: value gets copied from right to left

● You may find in some C code some assignments of the form:

 a = b = 10;

● It is equivalent to doing b = 10; then a = b;.

17

Expressions

An expression can be built from:

● constants

● variables

● operators, including arithmetic and logic operators

● function calls (we will see them later)

18

Expression examples
● 10

● 'c'

● varName

● 10 + 20

● (30 * 5) / (44 – 24)

● (a * 5) / (44 – b) + 'c'

● 45 % 10

● operators +, -, * (multiplication), / (division), % (modulo) are arithmetic operators

● An expression has a value, calculated from its constants, variables and operators.

19

The Division (/) and Modulo (%) operators

● An expression of the form x / y has as value the quotient of x by y.

100 / 10 : value is 10

100 / 15 : value is 6

10 / 100 : value in 0

● An expression of the form x % y has value the remainder of the division of x by y:

100 % 15 : value is 10

123 % 10 : value is 3

20

Riddle

main(){

 int x = 100;

 int y = 300;

 x = y + 200;

 y = x / 5;

 x = x + y;

 printf("%d", x); // will print... ?

}

21

Riddle

main(){

 int a = 5;

 int b = 7;

 int c = 8;

 a = b – c;

 b = a - c;

 c = a * b;

 printf("%d", c); // will print... ?

}

22

Expressions in printf arguments

main(){

 int x = 100;

 int y = 300;

 y = y / 5;

 x = x + 40;

 printf("%d", x + y - 100); // will print... ?

}

23

scanf()

● the scanf() function makes our programs pause to get user input

● The user types a value and presses ENTER to confirm.

● The received value is stored in a variable

● like printf(), it works with a string argument that contains placeholders, but it is a little
trickier

● here is the syntax that we will use to ask for an integer and store it in the variable x:

 scanf("%d", &x);

● Notice the & before the variable name

24

scanf() in action

main(){

 int age;

 printf("Please enter your age.\n");

 scanf("%d", &age);

 printf("Your age is %d\n", age);

}

25

scanf() in action, again

main(){

 int age, year;

 printf("Please enter your age.\n");

 scanf("%d", &age);

 printf("Please enter the current year.\n");

 scanf("%d", &year);

 printf("Your were born in the year %d\n", year-age);

}

26

Comparison operators
Comparison operators enable to compare the values of two expressions:

● EXPR > EXPR

● EXPR >= EXPR

● EXPR < EXPR

● EXPR <= EXPR

● EXPR == EXPR

● EXPR != EXPR

These boolean expressions, or conditions, can be used in the context of conditional
statements and loops.

27

if statement

...

if (CONDITION)

 [STATEMENT]

[NEXT STATEMENTS]

...

if (CONDITION) {

 [STATEMENTS] 
}

[NEXT STATEMENTS]

...

28

if statement example

main(){

 int age;

 printf("Please enter your age.\n");

 scanf("%d", &age);

 if (age < 18)

 printf("You are minor.\n");

 printf("Your age is %d.\n", age);

}

29

if-else statement
if (CONDITION)

 [STATEMENT]

else

 [STATEMENT]

[NEXT STATEMENTS]

...

if (CONDITION){

 [STATEMENTS]

} else {

 [STATEMENTS]

}

[NEXT STATEMENTS]
30

if-else statement example
main(){

 int age;

 printf("Please enter your age.\n");

 scanf("%d", &age);

 if (age < 18)

 printf("You are minor.\n");

 else

 printf("You are major.\n");

 printf("Your age is %d.\n", age);

}

31

Favor if-else over consecutive if’s

// not great:

if (age < 18)

 printf("You are minor.\n");

if (age >= 18)

 printf("You are major.\n");

printf("Your age is %d.\n", age);

32

// much better:

if (age < 18)

 printf("You are minor.\n");

else

 printf("You are major.\n");

printf("Your age is %d.\n", age);

Lecture Summary
● Linux processes

● Variables, assignment

● putchar() and printf()

● scanf()

● Arithmetic operators

● Comparison operators

● if and if-else statements

33

