
Introduction to 
Computer Science

Nazareno Aguirre

(Based on material by Dr. Guillaume Hoffmann)

Lecture 1

● This course’s official name:

“Introduction to Computer Science”

● Alternative name:

“Learn to use a computer to solve problems through
programming (in C)!”

Welcome!

“Use a computer…”
● Learn how to use a computer with a

Linux Operating System

● Learn how to use a command-line
interface (text-based, not icon-based)

● Why? because it’s efficient

● Learn how to use a basic text editor to
write programs

● We can later on transition to
Integrated Development
Environments (IDEs)

4

“… to solve problems…”
● This course is not just about technical proficiency

● The main goal of this course is to learn the basics of
algorithmic problem solving

● i.e., to automate problem solutions in computer
programs

● We will also practice reading comprehension in English,
to understand problem descriptions and basic programming
requirements (exercises)

● Sometimes exercises will guide you precisely into
writing programs. Sometimes you will have to design
non-trivial programmatic solutions to solve problems

● Your solution’s worth depends on several criteria but an
essential one is: does it solve the problem described in
the exercise?

“… through programming (in C)”

● C is the programming language we’ll use in
this course, to write programs

● It’s one of the most widely used programming
languages

● Learning programming is a long journey,
but we will progress step by step

● Mastering the whole of C demands a
significant effort. We will not learn the whole C
language in this course

● C can be complicated but we will strive to
write programs that are simple and clear

Computer Systems:
Hardware and Software

Hardware and software are the two
essential parts of a computer system.

● Hardware – all of the physical
components of the computer.

● Software – stored information (data
and instructions) that enables one to
operate the hardware.

Hardware
All physical components of the computer:

● Central Processing Unit (CPU)

● Input/Output components for communicating with
the user or other computers.

● Memory for saving data: primary (main) as well as
secondary (disks)

● Elements to perform inner communication between
all the above.

Central Processing Unit (CPU) or
Processor

● Main hardware component responsible of
program execution
● It executes very elementary instructions

● arithmetic calculations: add, subtract,
multiply, etc.

● logical calculations
● basic decisions upon the data

● It accesses information outside the CPU
through data reading and writing

Means of Input and
Output

Primary (Main) memory

• Typically called RAM (Random
Access Memory)

• Fixed into the computer

• Very fast

• Relatively expensive (Most computers
have relatively “little” RAM)

• Volatile (erased each time the
computer is shut down)

Secondary Memory
● Most computers also have a secondary memory.

● It is permanent (non-volatile): it does not need electric
current to store data.

● In “classic” Hard Disks (HD), data is saved by magnetic
means

● In Solid State Drives (SSD), data is saved into electronic
circuits.

● BIG Volumes: They can easily be 500X bigger than primary
memory.

● Relatively slower than primary memory (but SSDs are
much faster than HDs).

Removable Memory
Media

● Generally, relatively slow

● Volume can change between
different memories

● Non-volatile memory

● Main advantage: removable

Communication (bus)
Data is transferred between all the components through a bus

The data in the memory

All memory tools (instruments) save data by different means:

• Electronically (primary memory, USB drives, memory cards)

• Optical (CD, DVD)

• Magnetic (HD, Diskette)

In each case, some physical measure can be in two states:

● High voltage/low voltage; magnetic orientation, etc.

● We interpret these two states states as 0 or 1

● The memory is, in fact, a large series of binary digits (bits), each one
having value 0 or 1

Bits and Bytes
Memory is organized in basic groups of 8 bits, called a byte.

How many different states can a byte be in?

1 bit can be in one of 2 states

2 bits can be in one of 2*2 = 4 states

3 bits can be in one of 2*2*2 = 8 states

4 bits can be in one of 2*2*2*2 = 16 states….

… one byte (8 bits) can be in one of 28 == 256 different states.
(00000000 to 11111111)

What can be done with bits?
• The data in a computer memory is stored binary values

• Sequences of bits

• Binary values can be straightforwardly mapped back and forth to numeric
(decimal) values

• What can be done solely with bits, or equivalently, numbers?

• A lot!

Example
We can encode letters from an alphabet, to encode messages in a language as
sequences of numbers:

Example
We may also use numbers as representations of colors. Then, a picture or photo may be thought
of as a sequence of numbers, the number encoding the color of each single pixel in the picture

Example
We can also use numbers, e.g., to represent musical notes:

20

Code as numbers
● Numbers also can be interpreted as commands to be executed (run) by the computer.

● For example :

● 0 – read a number from memory.

● 1 – add 2 numbers.

● 2 – subtract between 2 numbers

● …

● Each CPU has its own particular way of understanding commands. This is the so called
machine language.

Programming in machine language is
difficult

• Every computer architecture has its own machine language. The definition of this
language cannot be changed.

• Machine language is designed for the computer to execute it

• Writing relatively simple programs in machine language can be highly
cumbersome

• Also reading and understanding such operations is difficult and costly

• Thus, programmers usually use high level languages.

• C, Python, Java, …

• A special tool will translate our high level programs into a machine language,
so that the machine can understand it and run it: the compiler.

Translating from high level languages
to machine code

● A compiler is a software tool that automates the translation from a high level programming language to
machine code.

● The C programming language, that we will use in this course, is an example of high level programming
language

● We will need a C compiler to translate our C programs to machine language, and execute the resulting code.

● Programs in high level programming languages, like C, are portable

● They can be run on different platforms/architectures, as long as we have compilers for such platforms

● Compilers also typically improve code efficiency in the translation, to profit from characteristics of the target
computer architecture

● Compilers are also able to detect syntactic errors in our programs, allowing us to identify programming issues

● There exist various alternative C compilers

● We will use one of the most notable: GCC

JSLinux: a computer in your web
browser!

● Open this link from your laptop/
desktop computer (no phone/tablet):

● https://bellard.org/jslinux/vm.html?
url=https://bellard.org/jslinux/
buildroot-x86.cfg

● Or from https://bellard.org/jslinux/
select the first option (Alpine Linux
3.12.0, Console, click on startup
link)

● What do you see?

https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg
https://bellard.org/jslinux/

Some Sample Commands

● uptime : tells how much time passed since the system started
● uname : tells the name of the operating system
● uname -a : same, but gives more details
● pwd : tells the path of the current directory
● ls : shows the list of files in the current directory
● ls -l : same, but with more details
● cat hello.c : shows the contents of the file hello.c of the current directory

How to execute a command

● Type the command exactly as it is spelled

● If the command comes as a list of words, put at least one space
between each word

● Type the Enter key

Examples of command structure

Single command:

uptime

Command with parameter (tells to which object apply the command):

cat hello.c

Command with flag (tells how the command should be executed):

ls -l

Command with flag and parameter:

ls -l directory

27

Navigate in the file system

● Files are organized as a hierarchy or directories and files.

● Directories behave like sets in mathematics. Directories and files can be
elements.

● A file or directory is referred by its path.

● In Linux the root directory is /

● Example of path of a file: /home/aguirre/to-do.txt

● A path that starts from the root directory is called absolute path.

● If it does not, it is called a relative path (to the current directory).

The current directory

●Command pwd shows you the path of the current directory.

●cd is a command that makes you change the current directory
(that is, you “travel” to another directory):

●cd without parameter makes you go to your home directory
●cd .. makes you go to the parent directory
●cd dir111 makes you go to the child directory dir111 (if it exists)

More commands related to files

● cp : copy a file
● cp -r : copy a directory
● mv : rename or move a file or a directory
● rm : delete a file
● rm -r : (recursively) delete a directory
● mkdir : create a directory

● Tip: in the command line interface, you can type the beginning of some file name and
press TAB, if there is no ambiguity the name will be autocompleted.

Compile and execute our first C
program in JSLinux
●JSLinux comes with a few files and directory (when you reset the system they
reappear)

●hello.c is a file that contains the source code of a simple “Hello world” C program

●See its content by executing cat hello.c

●To compile and execute, you may use gcc:

● gcc hello.c -o hello : program in file hello.c is compiled using gcc, into a file named
hello
●./hello : you execute the compiled program (it is necessary to type ./ at the beginning)

