
Introduction to Computer Science – Winter 2022 
Lecture 10

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 10

Agenda

● Global Variables

● Arrays as Function Parameters

● const

● Strings

● Variable-Length Arrays

● main()'s parameters

2

Global Variables
● A variable declared outside all functions, at the top level, is
global.

● A global variable can be read and modified by any function
in the program.

● Here, a is global, and b is local to main().

● Global variables can be used to pass information between
functions of a program.

● Their use is however strongly discouraged, as they lead
to high coupling (dependency) between functions.

● Typically, it is significantly more convenient to
communicate functions through arguments/parameters
and return values.

3

#include <stdio.h>

int a = 33; // global variable

int main() {

 int b = 1 + a;

 a = a + 1;

 printf("%d %d\n", a,b);

 return 0;

}

Abstraction by Parameterization

4

● Abstraction is crucial for dealing with complexity in software development.

● Functions and procedures allow us to better decompose problems into subproblems,
and programs into subprograms, exploiting a form of abstraction known as abstraction
by specification.

● Each function hides its implementation details from its users/clients, which can use
the function by just concentrating on what it does, rather than on how it does it.

● The effective definition of functions requires the use of abstraction by parameterization

● Abstraction by parameterization abstracts from the concrete identity of the data a
function operates on, replacing it by parameters.

● For better exploiting abstraction by parameterization, we need to be able to
parameterize any kind of data, not limited to simple data types.

Arrays as Function Parameters: Example

5

int sum(int array[], int size) {

 int result = 0;

 for (int i = 0; i < size; i++) {

 result = result + array[i];

 }

 return result;

}

● Programming languages generally allow us to define parameters of
functions/procedures, even if these are of structured types.

● In C, in particular, we can have array parameters.

Arrays as Function Parameters 1/2

● The specific mechanism for array parameters in C is
subtle.

● when an array is passed as an argument to a
function, the address of the array is passed.

● It maintains the “pass by value” approach of C,
but the address of the array is passed by value,
not the whole array information.

● The array elements themselves are not copied.

● The function can still access the array elements
with the a[i] notation.

6

int sum(int array[], int size) {

 int result = 0;

 for (int i = 0; i < size; i++) {

 result = result + array[i];

 }

 return result;

}

Arrays as Function Parameters 2/2

● In C, arrays are simply contiguous blocks
of memory. A function cannot know the
size of an array, just from the array
variable itself.

● Typically, when having array
parameters in functions, the size of the
arrays has to be passed as additional
parameters.

7

int sum(int array[], int size) {

 int result = 0;

 for (int i = 0; i < size; i++) {

 result = result + array[i];

 }

 return result;

}

Calling a function with an array parameter 1/2

● Suppose main() declares an array v of size
100.

● The usual way to call sum() from main with
array v to sum 100 elements is:

 
sum(v, 100);

● Note that we pass the name v alone, without
[] notation.

● This is because we do not pass an element
of v (v[i]), we pass the address of v.

8

int sum(int array[], int size) {

 int result = 0;

 for (int i = 0; i < size; i++) {

 result = result + array[i];

 }

 return result;

}

Calling a function with an array parameter 2/2

● The size parameter that is typically defined
together with an array parameter can be
instantiated in different ways, giving alternative
ways of calling functions on arrays in C.

● The following table illustrates some
possibilities to call function sum() from
main() with the v parameter

9

sum(v, 100) v[0] + v[1] + … + v[99]

sum(v, 88) v[0] + v[1] + … + v[87]

sum(&v[7], k-7) v[7] + v[8] + … + v[k-1]

int sum(int array[], int size) {

 int result = 0;

 for (int i = 0; i < size; i++) {

 result = result + array[i];

 }

 return result;

}

const in array parameters

● While the array address is passed by value, the array itself can be considered to
be passed “by reference”.

● Thus, one may (accidentally or not) modify the contents of an array parameter.

● The use of the type qualifier "const" before a parameter in the parameter list can

prevent the modification of the parameter.

● For arrays, it prevents us from modifying the contents of a parameter array. For

instance, this function copies n elements from src[] into dst[]:

void copy(const int src[], int dst[], int n)

10

Strings

● Strings in C are just arrays of char elements.

● By convention, a string is terminated by the end-of-string sentinel \0, or null character. The
null character's decimal value is zero.

● To be more explicit, we call such strings "zero-terminated strings".

● Zero-terminated strings enable functions to take a string parameter without a size, and to
process them until a zero is met.

● For instance:

● printf("This is a quite long string and I can handle it");

● printf("This one too.");

11

Example

12

int strlen(char s[]) {

 int i = 0;

 while (s[i] != '\0') {

 i++;

 }

 return i;

}

String Literals

● String constants are written between double quotes.

● For example, "abc" is a character array of size 4, the last element being the
null character \0.

● String constants are different from character constants.

● "a" and 'a' are not the same.

● Array "a" has two elements, the first with value 'a' and the second with
value '\0'.

13

String Initialization

● Character arrays have an alternate notation:

 char s[] = "abc";

is equivalent to:

 char s[] = {'a', 'b’, 'c', '\0'};

14

Example: Input String Stored in Array

● gets() lets the user type a string in the
standard input of the program, and
stores it (as zero-terminated string) into
the array given to it as parameter (str)

● gets() cannot know the size of str, so a
long input string can go out of bounds!

● for "real" programs, gets() is not
recommended, the alternative is:

fgets(str, 1000, stdin);

15

int main() {

 char str[1000];

 printf("Input your name:\n");

 gets(str);

 printf("Your name is: %s\n", str);

 return 0;

}

Variable-Length Arrays

● Arrays can be created based on a parameter size.

● In this way, the actual size of the array will be determined at run time.

● The size of the array does not change during an execution, but for different
executions we may have different sizes for the array.

16

Variable-Length Array Example

17

#include <stdio.h>

#include <assert.h>

int fib(int n) {

 assert (n >= 0);

 if (n == 0) {

 return 1;

 }

 else {

 int fibs[n+1];

 fibs[0] = 1;

 fibs[1] = 1;

 for (int i = 2; i <= n; i++) {

 fibs[i] = fibs[i-1] + fibs[i-2];

 }

 return fibs[n];

 }

}

int main() {

 printf("fib(%d) is %d\n", 10, fib(10));

 printf("fib(%d) is %d\n", 100, fib(100));

 return 0;

}

Pointers, a short overview 1/2
● A variable is stored at a particular memory location, or address, in the

computer.

● If v is a variable, then &v is the location, or address, in memory of its stored
value.

● The declaration: int * p;

 declares p to be of type pointer to int. It’s a variable that holds a memory
address where an integer is stored.

● p = &i; means that we store in p the address of variable i.

18

Pointers, a short overview 2/2

● Operator & (reference, direction) gets the address of some variable.

● Operator * (dereference, indirection) gets the value pointed by a pointer,

● So, (*p) evaluates to the value stored in variable i. , assuming p has the
memory address of i.

19

Arguments of main()

● argc provides a count of the number
of command line arguments

● Second argument, argv, is an array
of pointers to char, but think of it as
an array of zero-terminated strings.
These strings are the words that
make up the command line.

● Now, our programs can read their
commandline parameters!

20

