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Today's topics

Algorithms on sequences (arrays)

Sequence shuffling

Sequence sorting

Sequence searching

Sequence merging



Algorithms and Pseudo-Code

- It is a finite sequence of rigorous well-defined instructions, whose aim is to solve a
specific problem.

- Algorithms describe computations.
- They can be implemented as programs in a programming language
- They can also be abstractly described using pseudo-code
- Pseudo-code is an informal notation to abstractly describe programs
- Strong syntactic rules of programming languages are omitted.
- Types, operators, and control structures are used in a flexible way.

- Subtasks can be referred to as functions/procedures (straighforward tasks, or
complex tasks to be further refined/implemented later on)
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Pseudo-Code Example

iIsSPrime(int x) -> boolean {
assume Xx is positive
if X is 1, then return false
else {
foreachiin[2, 3, ..., (x-1)] do {
if i divides x then return false
}
return true
}
}




Shuffling a Sequence: The Fisher-Yates algorithm

- Problem: randomly shuffle the elements of a sequence.
- Input: a sequence s = [e1, ..., en] of elements

» Output: a random permutation of s.

- Fisher-Yates Algorithm:

- Produces an unbiased random permutation (every possible output permutation
is equally likely)

- Shuffles sequence elements “in place” (without the need for additional space)



Shuffling a Sequence: The Fisher-Yates algorithm

shuffle(seq s) {
for each i in [0..length(s)-1] do {
choose random j in [i..length(s)-1]
swap sli] and sj]
}
}




Shuffling a Sequence: The Fisher-Yates algorithm

shuffle(seq s) {
for i from length(s)-1 to 1 do {
choose random j in [0..i]
swap sli] and sj]
}
}
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Shuffling a Sequence: The Fisher-Yates algorithm

void shuffle(int arrayl[], int size) {
srand(time(NULL));
for (int i = 0; i < size; i++) {
int j = (rand() % ((size-1) - i + 1)) + 1i ;
int aux = arrayl[il;
array[i arrayljl;
arrayl[j aux;

] =
] =




Sorting a Sequence: An Important CS Problem

- Problem: sorting a sequence of elements.

- Input: a sequence s = [e1, ..., en] of sortable elements, i.e., elements for which
there exists a defined order.

- Qutput: a permutation of s that is increasingly sorted.

- There exist many alternative algorithms to solve this problem, with different
characteristics (efficiency, memory requirements, performance on particular data
structures, performance on partially sorted sequences, ...)



Sorting a Sequence with Insertion Sort

- Key idea:

- Maintain a sorted prefix of the sequence.

- At each step, insert the first element of the unsorted part into its sorted position
of the sorted prefix, thus extending the sorted prefix by one.

- When the unsorted part becomes empty, the sequence is sorted.
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Sorting a Sequence with Insertion Sort

Insertion Sort Execution Example

- 3 2 10 12 1 5 6

insertionSort(seq s) { ol 151 0s

for eachiin [1..length(s)-1] do {
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Sorting a Sequence with Insertion Sort

void insertionSort(int array[], int size) {
for (int i = 1; i < size; i++) {
int j = i;
while (j > 0 && array[j-11 > arrayl[jl) {
int aux = arrayljl;
arrayl[jl = arrayl[j-1];
array[j-11 = aux;
}
}
}




Sorting a Sequence with Selection Sort

- Key idea:

- Maintain a sorted prefix of the sequence, with all elements smaller than the

unsorted part.

- At each step, select the minimum of the unsorted part, and exchange it with the
first element in the unsorted part, thus extending the sorted prefix by one.

- When the unsorted part becomes empty, the sequence is sorted.
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Sorting a Sequence with Selection Sort

10 (14 || 27 || 33 || 35 || 19 || 42 || 44

selectionSort(seq s) {
for each i in [0..length(s)-2] do { -
min_indeXZi :10‘;14’;19’133”35’\27“42“44’
for j from i+1 to length(s) -1 do {
if s[j] < s[min_index] then {
min_index :j :102:14::19::271(351(33::42::44:

10 || 14 || 27 || 33 || 35 || 19 || 42 || 44

10 (14 || 19 [ 33 || 35 || 27 || 42 || 44

}

} 10 (14 || 19 (| 27 || 35 || 33 || 42 || 44

swap slj] and sfi]

10 (14 || 19 || 27 || 35 || 33 || 42 || 44

} 10 || 14 || 19 || 27 || 33 || 35 || 42 || 44

10 (14 || 19 || 27 || 33 || 35 || 42 || 44




Sorting a Sequence with Selection Sort

void selectionSort(int arrayl[], int size) {
for (int 1 = 0; i < size-1; i++) {
int min_index = 1i;
for (int j = i+1; j < size; j++) o
if (arrayl[j] < arrayl[min_index]) {
min_index = j;
s

}

int aux = arraylil;

array[i]l = arrayl[min_index];
array[min_index] = aux;




Searching in a Sequence

- Problem: given a sequence s and an element e, check if e belongs to s.
- |Input: a sequence s = [e1, ..., en] of elements and an element x

- Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s
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Searching in a Sequence: Linear Search

linearSearch(seq s, elem x) -> int {

X_index = -1

i=0

while index == -1 and i < length(s) {
if s[i] == x then x_index =i
=i+ 1

}

return x_index

}




Searching in a Sorted Sequence

- Problem: given a sorted sequence s and an element e, check if e belongs to s.
- Input: a sorted sequence s = [e1, ..., en] of elements and an element x
- Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s
- Linear search still works!

- But can we exploit the fact the s is sorted to speed up the search?
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Searching in a Sorted Sequence: Binary Search

- Key idea:
- look up the mid point of the sequence s
- If element in mid point of s is x, return mid point
- if element smaller than mid point of s, continue search in the first half
- If element greater than mid point of s, continue search in the second half

- Repeat the process until found, or subsequence to explore is empty
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Searching in a Sorted Sequence: Binary Search

binarySearch(seq s, elem x) -> int {
low =0
high = length(s) -1
while low <= high {
mid = (high-low)/2
if simid] == x then return mid
else {
if s[mid] < x then low = mid + 1
else high = mid - 1
}
}

return -1

}




Searching in a Sorted Sequence: Binary Search
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Searching in a Sorted Sequence: Binary Search
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Merging Sorted Sequences

- Problem: given two sorted sequences s1 and s2, create a sorted sequence s3
that merges s1 and s2

- |Input: sorted sequences s1 and s2

- Output: a sorted sequence s3 that is the permutation of the concatenation
s1+s2
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Merging Sorted Sequences

- Nalve algorithm:
- Copy in s3 both s1 and s2 in a contiguous way (s3 is the concatenation of s1 and s2)

- Sort s3

- Can we take advantage of the fact that s1 and s2 are sorted to make the process more
efficient?
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Merging Sorted Sequences: Linear Merge

- Key idea:
+ Maintain in s3 a sorted merge of two prefixes of s1 and s2
- s1 and s2 have corresponding “non-treated” parts
-+ At each step compare the first elements of the non-treated parts of s1 and s2.

- Extend s3 with the smaller of the two, and reduce the untreated part of the sequence contributing
the element to s3
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Merging Sorted Sequences: Linear Merge

merge(seq s1, seq s2) -> seq {
output =]
i=0
j=0
while i < length(s1) and j < length(s2) {
if s1[i] <= s2[j] then {
output = output + s1]i]
i=i+1
}
else {
output = output + s2[j]
j=j+1
}

}
while i < length(s1) {

output = output + s1]i]
i=i+1

}

while j < length(s2) {
output = output + s2[j]
j=j+1

}

return output

26



