Introduction to Computer Science
Lecture 11

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Today's topics

Algorithms on sequences (arrays)

Sequence shuffling

Sequence sorting

Sequence searching

Sequence merging

Algorithms and Pseudo-Code

- It is a finite sequence of rigorous well-defined instructions, whose aim is to solve a
specific problem.

- Algorithms describe computations.
- They can be implemented as programs in a programming language
- They can also be abstractly described using pseudo-code
- Pseudo-code is an informal notation to abstractly describe programs
- Strong syntactic rules of programming languages are omitted.
- Types, operators, and control structures are used in a flexible way.

- Subtasks can be referred to as functions/procedures (straighforward tasks, or
complex tasks to be further refined/implemented later on)

3

Pseudo-Code Example

iIsSPrime(int x) -> boolean {
assume Xx is positive
if X is 1, then return false
else {
foreachiin[2, 3, ..., (x-1)] do {
if i divides x then return false
}
return true
}
}

Shuffling a Sequence: The Fisher-Yates algorithm

- Problem: randomly shuffle the elements of a sequence.
- Input: a sequence s = [e1, ..., en] of elements

» Output: a random permutation of s.

- Fisher-Yates Algorithm:

- Produces an unbiased random permutation (every possible output permutation
is equally likely)

- Shuffles sequence elements “in place” (without the need for additional space)

Shuffling a Sequence: The Fisher-Yates algorithm

shuffle(seq s) {
for each i in [0..length(s)-1] do {
choose random j in [i..length(s)-1]
swap sli] and sj]
}
}

Shuffling a Sequence: The Fisher-Yates algorithm

shuffle(seq s) {
for i from length(s)-1 to 1 do {
choose random j in [0..i]
swap sli] and sj]
}
}

Cele 1 2 3 4 5 6 7 8 9
Fomio mokdz2 S Y COPHANT
N
Y

.swapcelk 9 &2
From18|olledas T COPH
Lpass

Flom1-? olied 4 STCOPH
swapcelk 7 &4 —
From16rg3llngSTCAPHONY
me15|§>ﬁl[esd§STCAPHONY
Fomi4.olkd1 O 1| CAPHONY
swepcelE 481 «————

F:oms:ouedoATCSPHONY

swapcelk 3&2

p,omo,o“edoACT SPHONY
pess
Dom'ACTSpHONY

Shuffling a Sequence: The Fisher-Yates algorithm

void shuffle(int arrayl[], int size) {
srand(time(NULL));
for (int i = 0; i < size; i++) {
int j = (rand() % ((size-1) - i + 1)) + 1i ;
int aux = arrayl[il;
array[i arrayljl;
arrayl[j aux;

] =
] =

Sorting a Sequence: An Important CS Problem

- Problem: sorting a sequence of elements.

- Input: a sequence s = [e1, ..., en] of sortable elements, i.e., elements for which
there exists a defined order.

- Qutput: a permutation of s that is increasingly sorted.

- There exist many alternative algorithms to solve this problem, with different
characteristics (efficiency, memory requirements, performance on particular data
structures, performance on partially sorted sequences, ...)

Sorting a Sequence with Insertion Sort

- Key idea:

- Maintain a sorted prefix of the sequence.

- At each step, insert the first element of the unsorted part into its sorted position
of the sorted prefix, thus extending the sorted prefix by one.

- When the unsorted part becomes empty, the sequence is sorted.

r

N

|

11

9 10

sorted prefix

10

unsorted part

Element to insert in the
correct position in the sorted
prefix

Sorting a Sequence with Insertion Sort

Insertion Sort Execution Example

- 3 2 10 12 1 5 6

insertionSort(seq s) { ol 151 0s

for eachiin [1..length(s)-1] do {

10 12 1 S 6

j=i

while (j > 0 and s[j-1]>s[j]) { BOl (2] [1[5][6
sSwap S['] and S[i_1] > 3 4 10 1 5 6

}
} ol) 1 NIl

) miEnlEnfEal o 2§ o Jic

1 2 3 - S 6 10 12

Sorting a Sequence with Insertion Sort

void insertionSort(int array[], int size) {
for (int i = 1; i < size; i++) {
int j = i;
while (j > 0 && array[j-11 > arrayl[jl) {
int aux = arrayljl;
arrayl[jl = arrayl[j-1];
array[j-11 = aux;
}
}
}

Sorting a Sequence with Selection Sort

- Key idea:

- Maintain a sorted prefix of the sequence, with all elements smaller than the

unsorted part.

- At each step, select the minimum of the unsorted part, and exchange it with the
first element in the unsorted part, thus extending the sorted prefix by one.

- When the unsorted part becomes empty, the sequence is sorted.

r

N

13

10

15

|

sorted prefix

13

unsorted part

Element to exchange with the
minimum of the unsorted part

Sorting a Sequence with Selection Sort

10 (14 || 27 || 33 || 35 || 19 || 42 || 44

selectionSort(seq s) {
for each i in [0..length(s)-2] do { -
min_indeXZi :10‘;14’;19’133”35’\27“42“44’
for j from i+1 to length(s) -1 do {
if s[j] < s[min_index] then {
min_index :j :102:14::19::271(351(33::42::44:

10 || 14 || 27 || 33 || 35 || 19 || 42 || 44

10 (14 || 19 [33 || 35 || 27 || 42 || 44

}

} 10 (14 || 19 (| 27 || 35 || 33 || 42 || 44

swap slj] and sfi]

10 (14 || 19 || 27 || 35 || 33 || 42 || 44

} 10 || 14 || 19 || 27 || 33 || 35 || 42 || 44

10 (14 || 19 || 27 || 33 || 35 || 42 || 44

Sorting a Sequence with Selection Sort

void selectionSort(int arrayl[], int size) {
for (int 1 = 0; i < size-1; i++) {
int min_index = 1i;
for (int j = i+1; j < size; j++) o
if (arrayl[j] < arrayl[min_index]) {
min_index = j;
s

}

int aux = arraylil;

array[i]l = arrayl[min_index];
array[min_index] = aux;

Searching in a Sequence

- Problem: given a sequence s and an element e, check if e belongs to s.
- |Input: a sequence s = [e1, ..., en] of elements and an element x

- Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s

16

Searching in a Sequence: Linear Search

linearSearch(seq s, elem x) -> int {

X_index = -1

i=0

while index == -1 and i < length(s) {
if s[i] == x then x_index =i
=i+ 1

}

return x_index

}

Searching in a Sorted Sequence

- Problem: given a sorted sequence s and an element e, check if e belongs to s.
- Input: a sorted sequence s = [e1, ..., en] of elements and an element x
- Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s
- Linear search still works!

- But can we exploit the fact the s is sorted to speed up the search?

18

Searching in a Sorted Sequence: Binary Search

- Key idea:
- look up the mid point of the sequence s
- If element in mid point of s is x, return mid point
- if element smaller than mid point of s, continue search in the first half
- If element greater than mid point of s, continue search in the second half

- Repeat the process until found, or subsequence to explore is empty

19

Searching in a Sorted Sequence: Binary Search

binarySearch(seq s, elem x) -> int {
low =0
high = length(s) -1
while low <= high {
mid = (high-low)/2
if simid] == x then return mid
else {
if s[mid] < x then low = mid + 1
else high = mid - 1
}
}

return -1

}

Searching in a Sorted Sequence: Binary Search

7 112

a

X X X
l 7 14 7
1 Lo [Lo Lol o] [[
0 1 2 3 4 5 6 / 8 9 10 11

low mid mid mid high

Searching in a Sorted Sequence: Binary Search

BOnEnnoe
’ E
“ lpmm
T T
/

low mid
6
/1

low mid

23 || 8 /{\

low mid high

Merging Sorted Sequences

- Problem: given two sorted sequences s1 and s2, create a sorted sequence s3
that merges s1 and s2

- |Input: sorted sequences s1 and s2

- Output: a sorted sequence s3 that is the permutation of the concatenation
s1+s2

23

Merging Sorted Sequences

- Nalve algorithm:
- Copy in s3 both s1 and s2 in a contiguous way (s3 is the concatenation of s1 and s2)

- Sort s3

- Can we take advantage of the fact that s1 and s2 are sorted to make the process more
efficient?

24

Merging Sorted Sequences: Linear Merge

- Key idea:
+ Maintain in s3 a sorted merge of two prefixes of s1 and s2
- s1 and s2 have corresponding “non-treated” parts
-+ At each step compare the first elements of the non-treated parts of s1 and s2.

- Extend s3 with the smaller of the two, and reduce the untreated part of the sequence contributing
the element to s3

25

Merging Sorted Sequences: Linear Merge

merge(seq s1, seq s2) -> seq {
output =]
i=0
j=0
while i < length(s1) and j < length(s2) {
if s1[i] <= s2[j] then {
output = output + s1]i]
i=i+1
}
else {
output = output + s2[j]
j=j+1
}

}
while i < length(s1) {

output = output + s1]i]
i=i+1

}

while j < length(s2) {
output = output + s2[j]
j=j+1

}

return output

26

