
Introduction to Computer Science – Winter 2022 
Lecture 11

Nazareno Aguirre

(based on material by Guillaume Hoffmann)

Introduction to Computer Science 
Lecture 11

Today's topics

Algorithms on sequences (arrays)

• Sequence shuffling

• Sequence sorting

• Sequence searching

• Sequence merging

2

Algorithms and Pseudo-Code
● It is a finite sequence of rigorous well-defined instructions, whose aim is to solve a

specific problem.

● Algorithms describe computations.

● They can be implemented as programs in a programming language

● They can also be abstractly described using pseudo-code

● Pseudo-code is an informal notation to abstractly describe programs

● Strong syntactic rules of programming languages are omitted.

● Types, operators, and control structures are used in a flexible way.

● Subtasks can be referred to as functions/procedures (straighforward tasks, or
complex tasks to be further refined/implemented later on)

3

Pseudo-Code Example

4

isPrime(int x) -> boolean {

 assume x is positive

 if x is 1, then return false

 else {

 for each i in [2, 3, …, (x-1)] do {

 if i divides x then return false

 }

 return true

 }

}

Shuffling a Sequence: The Fisher-Yates algorithm

● Problem: randomly shuffle the elements of a sequence.

● Input: a sequence s = [e1, …, en] of elements

● Output: a random permutation of s.

● Fisher-Yates Algorithm:

● Produces an unbiased random permutation (every possible output permutation
is equally likely)

● Shuffles sequence elements “in place” (without the need for additional space)

5

Shuffling a Sequence: The Fisher-Yates algorithm

6

shuffle(seq s) {

 for each i in [0..length(s)-1] do {

 choose random j in [i..length(s)-1]

 swap s[i] and s[j]

 }

}

Shuffling a Sequence: The Fisher-Yates algorithm

7

shuffle(seq s) {

 for i from length(s)-1 to 1 do {

 choose random j in [0..i]

 swap s[i] and s[j]

 }

}

Shuffling a Sequence: The Fisher-Yates algorithm

8

void shuffle(int array[], int size) {
 srand(time(NULL));
 for (int i = 0; i < size; i++) {
 int j = (rand() % ((size-1) - i + 1)) + i ;
 int aux = array[i];
 array[i] = array[j];
 array[j] = aux;
 }
}

Sorting a Sequence: An Important CS Problem

● Problem: sorting a sequence of elements.

● Input: a sequence s = [e1, …, en] of sortable elements, i.e., elements for which
there exists a defined order.

● Output: a permutation of s that is increasingly sorted.

● There exist many alternative algorithms to solve this problem, with different
characteristics (efficiency, memory requirements, performance on particular data
structures, performance on partially sorted sequences, …)

9

Sorting a Sequence with Insertion Sort

● Key idea:

● Maintain a sorted prefix of the sequence.

● At each step, insert the first element of the unsorted part into its sorted position
of the sorted prefix, thus extending the sorted prefix by one.

● When the unsorted part becomes empty, the sequence is sorted.

10

3 7 8 11 5 1 0 9 10

sorted prefix unsorted part

Element to insert in the

correct position in the sorted

prefix
3 5 7 8 11 1 0 9 10

Sorting a Sequence with Insertion Sort

insertionSort(seq s) {

 for each i in [1..length(s)-1] do {

 j = i

 while (j > 0 and s[j-1]>s[j]) {

 swap s[j] and s[j-1]

 }

 }

}

Sorting a Sequence with Insertion Sort

void insertionSort(int array[], int size) {
 for (int i = 1; i < size; i++) {
 int j = i;
 while (j > 0 && array[j-1] > array[j]) {
 int aux = array[j];
 array[j] = array[j-1];
 array[j-1] = aux;
 }
 }
}

Sorting a Sequence with Selection Sort

● Key idea:

● Maintain a sorted prefix of the sequence, with all elements smaller than the
unsorted part.

● At each step, select the minimum of the unsorted part, and exchange it with the
first element in the unsorted part, thus extending the sorted prefix by one.

● When the unsorted part becomes empty, the sequence is sorted.

13

1 3 5 7 10 9 13 8 15

sorted prefix unsorted part

Element to exchange with the

minimum of the unsorted part

1 3 5 7 8 9 13 10 15

Sorting a Sequence with Selection Sort

selectionSort(seq s) {

 for each i in [0..length(s)-2] do {

 min_index = i

 for j from i+1 to length(s) -1 do {

 if s[j] < s[min_index] then {

 min_index = j

 }

 }

 swap s[j] and s[i]

 }

}

Sorting a Sequence with Selection Sort

void selectionSort(int array[], int size) {
 for (int i = 0; i < size-1; i++) {
 int min_index = i;
 for (int j = i+1; j < size; j++) {
 if (array[j] < array[min_index]) {
 min_index = j;
 }
 }
 int aux = array[i];
 array[i] = array[min_index];
 array[min_index] = aux;
 }
}

Searching in a Sequence

● Problem: given a sequence s and an element e, check if e belongs to s.

● Input: a sequence s = [e1, …, en] of elements and an element x

● Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s

16

Searching in a Sequence: Linear Search

17

linearSearch(seq s, elem x) -> int {

 x_index = -1

 i = 0

 while index == -1 and i < length(s) {

 if s[i] == x then x_index = i

 i = i + 1

 }

 return x_index

}

Searching in a Sorted Sequence

● Problem: given a sorted sequence s and an element e, check if e belongs to s.

● Input: a sorted sequence s = [e1, …, en] of elements and an element x

● Output: if x belongs to s, index i such that ei is x; -1 if x does not belong to s

● Linear search still works!

● But can we exploit the fact the s is sorted to speed up the search?

18

Searching in a Sorted Sequence: Binary Search

19

● Key idea:

● look up the mid point of the sequence s

● If element in mid point of s is x, return mid point

● if element smaller than mid point of s, continue search in the first half

● If element greater than mid point of s, continue search in the second half

● Repeat the process until found, or subsequence to explore is empty

Searching in a Sorted Sequence: Binary Search

20

binarySearch(seq s, elem x) -> int {

 low = 0

 high = length(s) -1

 while low <= high {

 mid = (high-low)/2

 if s[mid] == x then return mid

 else {

 if s[mid] < x then low = mid + 1

 else high = mid - 1

 }

 }

 return -1

}

21

Searching in a Sorted Sequence: Binary Search

22

Searching in a Sorted Sequence: Binary Search

Merging Sorted Sequences

● Problem: given two sorted sequences s1 and s2, create a sorted sequence s3
that merges s1 and s2

● Input: sorted sequences s1 and s2

● Output: a sorted sequence s3 that is the permutation of the concatenation
s1+s2

23

Merging Sorted Sequences

● Naïve algorithm:

● Copy in s3 both s1 and s2 in a contiguous way (s3 is the concatenation of s1 and s2)

● Sort s3

● Can we take advantage of the fact that s1 and s2 are sorted to make the process more
efficient?

24

Merging Sorted Sequences: Linear Merge

● Key idea:

● Maintain in s3 a sorted merge of two prefixes of s1 and s2

● s1 and s2 have corresponding “non-treated” parts

● At each step compare the first elements of the non-treated parts of s1 and s2.

● Extend s3 with the smaller of the two, and reduce the untreated part of the sequence contributing
the element to s3

25

26

merge(seq s1, seq s2) -> seq {

 output = []

 i = 0

 j = 0

 while i < length(s1) and j < length(s2) {

 if s1[i] <= s2[j] then {

 output = output + s1[i]

 i = i + 1
 }
 else {

 output = output + s2[j]

 j = j + 1

 }

 }

 while i < length(s1) {

 output = output + s1[i]

 i = i + 1

 }

 while j < length(s2) {

 output = output + s2[j]

 j = j + 1

 }

 return output

}

Merging Sorted Sequences: Linear Merge

