Workshop 6

Exercise 1

We equip the set $E = \mathbb{R}^2$ with the relation \mathcal{R} defined by

$$(x,y) \mathcal{R} (x',y') \iff \exists a > 0, \ \exists b > 0 \mid x' = ax \text{ and } y' = by.$$

- (a) Show that \mathcal{R} is an equivalence relation.
- (b) Give the equivalence class of the elements A = (1,0), B = (0,-1) and C = (1,1).
- (c) Determine the equivalence classes of \mathcal{R} .

Exercise 2

Let E be a fixed set containing at least two elements. We consider the following binary relation on $\mathcal{F}(E,\mathbb{R}_+)$:

$$\forall (f,g) \in \mathcal{F}(E,\mathbb{R}_+) \times \mathcal{F}(E,\mathbb{R}_+), f \preccurlyeq g \iff [\forall x \in E, f(x) \leqslant g(x)]$$

- (a) Show that \preccurlyeq defines an order relation on $\mathcal{F}(E, \mathbb{R}_+)$.
- (b) Is the order thus defined total?¹
- (c) Let $f \in \mathcal{F}(E, \mathbb{R}_+)$. Write the definitions of "f is upper bounded" and "{f} is upper bounded".
- (d) Show that, for this order, $\mathcal{F}(E, \mathbb{R}_+)$ has a smallest element by specifying it.

Exercise 3

We define the relation \mathcal{R} on \mathbb{N}^* by $p\mathcal{R}q \iff \exists k \in \mathbb{N}^*$, $q = p^k$. Show that \mathcal{R} defines a partial order on \mathbb{N}^* . Determine the upper bounds of $\{2,3\}$ for this order.

Exercise 4

We equip \mathbb{R}^2 with the relation denoted \prec defined by

 $(x,y) \prec (x',y') \iff x \le x' \text{ and } y \le y'.$

- (a) Show that \prec is an order relation on \mathbb{R}^2 . Is the order total?
- (b) Does the closed disk with center O and radius 1 have any upper bounds? a supremum? a maximal element?

Exercise 5

We define on \mathbb{R}^2 the relation \prec by

$$(x, y) \prec (x', y') \iff ((x < x') \text{ or } (x = x' \text{ and } y \le y')).$$

Prove that this defines an order relation on \mathbb{R}^2 .

Exercise 6 (\star)

Let E be an ordered set. Prove that every subset of E has a maximal element if and only if every increasing sequence of E is stationary.

Exercise 7 $(\star\star)$

An order \leq on a set *E* is said to be well-founded if there is no strictly decreasing infinite sequence (x_n) of *E*. Show that \mathbb{N}^2 equipped with the lexicographic order (the order from Exersice 5) is well-founded.

¹A total order is just another way of saying a linear order