Workshop 4

Exercise 1 Prove that no function exists from $\mathbb{N} \to \mathbb{N}$ such that f(n) > f(n+1).

Exercise 2 Show that, for all $n \in \mathbb{N}^*$, we have $2^{n-1} \leq n! \leq n^n$.

Exercise 3

Prove by induction that, for all $n \in \mathbb{N}^*$, 6 divides $7^n - 1$.

Exercise 4

For $n \in \mathbb{N}$, we consider the following property:

 $P_n: 2^n > n^2.$

1. Show that the implication $P_n \implies P_{n+1}$ is true for $n \ge 3$.

2. For what values of n is the property P_n true?

Exercise 5

Let $(u_n)_{n\in\mathbb{N}}$ be the sequence defined by $u_0 = 2$, $u_1 = 3$ and, for all $n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$. Show that, for all $n \in \mathbb{N}$, $u_n = 1 + 2^n$.

Exercise 6

Let $(u_n)_{n \in \mathbb{N}^*}$ be the sequence defined by $u_1 = 3$ and for all $n \ge 1$, $u_{n+1} = \frac{2}{n} \sum_{k=1}^n u_k$. Show that, for all $n \in \mathbb{N}^*$, we have $u_n = 3n$.

Exercise 7

Let (u_n) be the sequence defined by $u_0 = 1$ and, for all $n \ge 0$, $u_{n+1} = u_0 + u_1 + \dots + u_n$. Show that, for all $n \ge 1$, $u_n = 2^{n-1}$.

Exercise 8

Prove that every convex polygon with n sides has $\frac{n(n-3)}{2}$ diagonals.

Exercise 9 (\star)

- 1. Write $\cos((n+1)^\circ)$ as a function of $\cos(n^\circ)$, $\cos(1^\circ)$ and $\cos((n-1)^\circ)$.
- 2. Prove that $\cos(1^\circ)$ is irrational.

Exercise 10 (\star)

Let n be a strictly positive integer and p_n the n-th prime number. Show that there are infinitely many prime numbers. Show the following inequality: $p_n \leq 2^{2^n}$.

Exercise 11 $(\star\star)$

Show that, for any integer $n \ge 3$, we can find n strictly positive integers x_1, \ldots, x_n , two by two distinct, such that

$$\frac{1}{x_1} + \dots + \frac{1}{x_n} = 1.$$

Exercise 12 $(\star\star)$

Let $f: \mathbb{N} \to \mathbb{N}$ such that f(n+1) > f(f(n)) for all $n \in \mathbb{N}$. Show that f(n) = n for all $n \in \mathbb{N}$. (Hint : Show by induction on n that $P_n: \forall k \ge n \implies f(k) \ge n$.)