Workshop 12

Exercise 1

Are the following sets countable?

- (a) $\{2^n; n \ge 0\};$
- (b) $\mathbb{N} \times \mathbb{R}$;
- (c) $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\};\$
- (d) the set of prime numbers;
- (e) the set of functions from \mathbb{R} into \mathbb{R} .

Exercise 2

Let (f_n) be a sequence of applications of \mathbb{N} into \mathbb{N} . Let $f : \mathbb{N} \to \mathbb{N}$ be defined by: for all $n \in \mathbb{N}$, $f(n) = f_n(n) + 1$. Show that for any integer p, we have $f_p \neq f$. Deduce that the set of applications of \mathbb{N} into \mathbb{N} is not countable.

Exercise 3

- (a) Show that]0,1[and]0,1] are in bijection (we can use a bijection from]0,1] to]0,1[which associates 1/(n+1) with 1/n.)
- (b) Show that]0,1[and [0,1] are in bijection.

Exercise 4

Let $(I_{\alpha})_{\alpha \in A}$ be a family of pairwise disjoint non-empty open intervals. Show that A is necessarily at most countable.

Exercise 5

A sequence of integers (n_k) is said to be stationary if there exists an integer $p \in \mathbb{N}$ such that, for all $k \ge p$, $n_k = n_p$. Prove that the set of sequences of almost zero integers and that the set of sequences of stationary integers are countable.

Exercise 6 (\star)

- (a) Compute $\sum_{n>0} \frac{1}{2^{n+1}}$.
- (b) Let (u_n) be a sequence of [0, 1]. Show that, for all $n \ge 1$, there exists an element x_n in $[0,1] \setminus \bigcup_{k=0}^n \left[u_k \frac{1}{2^{k+2}}, u_k + \frac{1}{2^{k+2}} \right]$.
- (c) Why can we extract from the sequence (x_n) a subsequence convergent to $\ell \in [0, 1]$?
- (d) Prove that [0, 1] is not countable.

Exercise 7 (\star)

We say that a real number x is an algebraic number if there exist $d \in \mathbb{N}^*$ and relative integers a_0, \ldots, a_d with $a_d \neq 0$ such that

$$a_d x^d + \dots + a_1 x + a_0 = 0$$

The smallest integer d verifying this property is then the degree of x.

- (a) What are the algebraic numbers of degree 1?
- (b) Prove that the set of algebraic numbers of degree d is at most countable.
- (c) Prove that the set of algebraic numbers is countable.

Exercise 8 (\star)

- (a) Prove that the set of finite subsets of $\mathbb N$ is countable.
- (b) Assume that the set of subsets of \mathbb{N} is countable and denote by $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ a bijection. Considering $A = \{n \in \mathbb{N}; n \notin f(n)\}$, find a contradiction.