Workshop 10

Exercise 1

Prove that the set of functions from \mathbb{N} to $\{0,1\}$ is in bijection with $\mathcal{P}(\mathbb{N})$.

Exercise 2

If E and F are two nonempty finite sets, then $\mathcal{F}(E,F)$ is a finite set and

$$\operatorname{Card} \mathcal{F}(E, F) = \operatorname{Card} F^{\operatorname{Card} E}.$$

Exercise 3

Let A be a set of cardinal a. Prove the cardinal of $\mathcal{P}(A)$ is 2^a .

Exercise 4

Let E_n be the set of polynomials of degree less than or equal to $n \in \mathbb{N}$ and whose coefficients are 0 or 1. Compute Card E_n .

Exercise 5

Let E be a finite set and A be a subset of E, notice we have the following:

$$\operatorname{Card} A = \sum_{x \in E} \mathbb{1}_A(x).$$

- (a) Shoat that if E is a finite set and $A \subset E$ then Card $A \leq$ Card E
- (b) Show Card $A = \text{Card } E \iff A = E$.

Exercise 6

If E and F are two finite sets, then $E \times F$ is finite and $Card(E \times F) = Card E Card F$.

Exercise 7

Let E and F be two finite sets, $f \in \mathcal{F}(E, F)$. Show the following:

- (a) $\operatorname{Card} E \ge \operatorname{Card} f(E)$ and $\operatorname{Card} E = \operatorname{Card} f(E) \iff f$ is injective.
- (b) If f is surjective, then $\operatorname{Card} E \geq \operatorname{Card} F$.
- (c) If f is injective, then $\operatorname{Card} E \leq \operatorname{Card} F$.
- (d) If f is bijective, then Card E = Card F.

Exercise 8

Let A_1, A_2, \ldots, A_n be n sets (not necessarily disjoint). Prove that we have the following equality of cardinals:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k+1} \left(\sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}| \right)$$

Exercise 9 (\star)

Let X be a set. Construct an injection from X to $\mathcal{P}(X)$. Can we have a bijection between X and $\mathcal{P}(X)$?