Workshop 5

Exercise 1

Give a positive integer and a negative integer that are:

(a) congruent to $0 \mod 5$ and not congruent to $0 \mod 6$.

(b) congruent to $0 \mod 5$ and congruent to $0 \mod 6$.

(c) congruent to 2 mod 4 and congruent to 8 mod 6.

(d) congruent to 3 mod 4 and congruent to 3 mod 5.

(e) congruent to 1 mod 3 and congruent to 1 mod 7.

Exercise 2

Find all the integers n such that this equation is satisfied:

$$2n+5 \equiv 3n+1 \mod 3.$$

Exercise 3

State whether the following relations are reflexive, symmetric, transitive:

- (a) $E = \mathbb{Z}$ and $x \mathcal{R} y \iff x = -y;$
- (b) $E = \mathbb{R}$ and $x\mathcal{R}y \iff \cos^2 x + \sin^2 y = 1;$
- (c) $E = \mathbb{N}$ and $x\mathcal{R}y \iff \exists p, q \ge 1, y = px^q$ (p and q are integers).

Which of the preceding examples are equivalence relations?

Exercise 4

Is the orthogonality relation between two lines in the plane symmetrical? reflexive? transitive?

Exercise 5

On \mathbb{R}^2 , we define the equivalence relation \mathcal{R} by

$$(x,y)\mathcal{R}(x',y') \iff x = x'.$$

Prove that \mathcal{R} is an equivalence relation.

(*) Then determine the equivalence class of an element $(x_0, y_0) \in \mathbb{R}^2$.

Exercise 6

We define on \mathbb{R} the relation $x\mathcal{R}y$ if and only if $x^2 - y^2 = x - y$.

(a) Show that \mathcal{R} is an equivalence relation.

(b) (\star) Calculate the equivalence class of an element x of \mathbb{R} . How many elements are there in this class?

Exercise 7

Let E be a set. We define on $\mathcal{P}(E)$, the set of subsets of E, the following relation:

$$A\mathcal{R}B$$
 if $A = B$ or $A = \overline{B}$

where \overline{B} is the complement of B (in E). Prove that \mathcal{R} is an equivalence relation.

Exercise 8

Let E be a non-empty set and $\alpha \subset \mathcal{P}(E)$ non-empty verifying the following property:

$$\forall X, Y \in \alpha, \ \exists Z \in \alpha, Z \subset (X \cap Y).$$

We define on $\mathcal{P}(E)$ the relation ~ by $A \sim B \iff \exists X \in \alpha, X \cap A = X \cap B$. Prove that this defines an equivalence relation on $\mathcal{P}(E)$.

(*) What are the equivalence classes of \emptyset and E?