Workshop 7

Exercise 1

Let E be a set and A and B two subsets of E. Of which sets are the following functions the characteristic functions?

- (a) $\min(1_A, 1_B)$.
- (b) $\max(1_A, 1_B)$.
- (c) $1_A \cdot 1_B$.
- (d) $1 1_A$.
- (e) $1_A + 1_B 1_A \cdot 1_B$.
- (f) $(1_A 1_B)^2$.

Exercise 2

Any finite subset of a totally ordered set (E, \preccurlyeq) has a greatest element and a smallest element. Show that this result is false if the order is no longer total.

Exercise 3

Let (E, \leq) be an ordered set. Let A be a nonempty subset of E having a smallest element and a greatest element.

- (a) Show that $\min A \leq \max A$.
- (b) What can we say about the about A if $\min A = \max A$?

Exercise 4

Let E be a nonempty set. Consider the order induced by inclusion on $\mathcal{P}(E)$. Let \mathcal{A} be a subset of $\mathcal{P}(E)$.

- (a) Show that $\bigcap_{A \in \mathcal{A}} A$ lowers \mathcal{A} .
- (b) Deduce that \mathcal{A} has a lower bound in $(\mathcal{P}(E), \subset)$.
- (c) Show that \mathcal{A} has an upper bound in $(\mathcal{P}(E), \subset)$.

Exercise 5

Let (E, \leq) be an ordered set. Show that if A and B are two subsets of E such that $\sup(A), \sup(B)$ and $\sup\{\sup(A), \sup(B)\}$ exist, then $\sup(A \cup B)$ exists and calculate it (we can try on examples to get an idea of the result to prove.)

Exercise 6

- (a) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, and let A = [-1, 4]. Determine
 - (i) the direct image of A by f;
 - (ii) the inverse image¹ of A by f.
- (b) Consider the function $\sin : \mathbb{R} \to \mathbb{R}$. What is the direct image, by \sin , of \mathbb{R} ? Of $[0, 2\pi]$? Of $[0, \pi/2]$? What is the inverse image, by \sin , of [0, 1]? Of [3, 4]? Of [1, 2]?

Exercise 7 (\star)

Let E and F be two sets and $f: E \to F$. Prove that

(a)
$$\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A))$$

(b) $\forall B \in \mathcal{P}(F), f(f^{-1}(B)) \subset B.$

¹Same thing as a pre-image

(c) (\star) Does equality hold in general?

Exercise 8 (\star)

 $[\star]$ Let E and F be two sets and let $f: E \to F$. Take A and B two subsets of F.

- (a) Prove that $A \subset B \implies f^{-1}(A) \subset f^{-1}(B)$. Is the converse true?
- (b) Prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- (c) Prove that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Exercise 9 (\star)

Let E, F be two sets and $f: E \to F$. Let $A \subset E$ and $B \subset F$. Prove the equivalence:

$$f(A) \cap B = \emptyset \iff A \cap f^{-1}(B) = \emptyset.$$