Skip to content

1.9

  1. Suppose there exist three functions \(f: A \xrightarrow{1-1} B\), \(g: B \xrightarrow{1-1} C\), and \(h: C \xrightarrow{1-1} A\). Prove that \(A \approx B \approx C\).

    • \(A \approx B\)

    I will use Theorem C-S-B to prove that there must exist a bijection between \(A\) and \(B\)

    Thus \(\exists f: A \to B\) injective.

    \(r = h \circ g: B \to A\) is injective because it is the composition of two injective functions. * \(C \approx A\)

    \(h: C \to A\) injective.

    \(s = g \circ f\) is injective because it is the composition of two injective functions

    Thus \(s: A \to C\).

  2. If possible, give an example of:

    1. Functions \(f\) and \(g\) such that \(f: \mathbb{Q} \xrightarrow{1-1} \mathbb{N}\) and \(g: \mathbb{N} \xrightarrow{1-1} \mathbb{Q}\), but neither \(f\) nor \(g\) are surjective.

      \(g: \mathbb{N} \xrightarrow{1-1} \mathbb{Q}\) where \(n\mapsto n\). This is not surjective because \(\frac{1}{2} \notin \text{Im}(g)\).


      \(f: \mathbb{Q} \xrightarrow{1-1} \mathbb{N}\). For \(\frac{a}{b} \in \mathbb{Q}\) (with \(\gcd(a, b) = 1\)):

      • If \(a > 0\), map \(\frac{a}{b} \mapsto 2^a 3^b\).
      • If \(a < 0\), map \(\frac{a}{b} \mapsto 5^{-a} 7^b\).

      This is not surjective because \(13 \notin \text{Im}(f)\). 2. A function \(f: \mathbb{R} \xrightarrow{1-1} \mathbb{N}\).

      Impossible 3. A function \(f: \mathcal{P}(\mathbb{N}) \xrightarrow{1-1} \mathbb{N}\).

      Impossible 4. A function \(f: \mathbb{R} \xrightarrow{1-1} \mathbb{Q}\).

      Impossible

  3. Prove that \(\mathbb{R}^2 \approx \mathbb{R}\)

    I will try to find two injections, then use the C-S-B Theorem.

    \(f: \mathbb{R} \to \mathbb{R}^2\) where \(x \mapsto (x, 1)\).

    \(g: \mathbb{R}^2 \xrightarrow{1-1} \mathbb{R}\)

    We know that \(\mathbb{R} \approx (0, 1)\).

    \(g_2: (0, 1) \times (0, 1) \to (0, 1)\) is defined as follows \((x, y) \mapsto 0.x_1 y_1 x_2 y_2 x_3 y_3 \dots\)

    But we need to express as infinite decimal number such as \(0.1\to0.09999...\)

    And it is not surjective since \(0.1010101 \dots\) and \(0.1101101 \dots\) can not be expressed