12.23
Today: \(X, Y\)
\(\quad \Rightarrow X \times Y\)
\(\quad \Rightarrow \text{Fun}(X, Y) = \{f : X \to Y \, \text{functions}\}\)
\(\quad \Rightarrow \text{Inj}(X, Y) = \{f : X \to Y \, \text{injective}\}\)
\(\quad\Rightarrow\text{Bij}(X,Y)=\dots\)
Proposition
Suppose \(X\approx X^{\prime},Y\approx Y'\)
-
If \(X\cap Y=\emptyset\wedge X^{\prime}\cap Y^{\prime}=\emptyset,\) then \(X\cup Y\approx X'\cup Y'\)
Define \(h:X\cup Y\rightarrow X'\cup Y'\) where \(h=\begin{cases}f\left(a\right)\text{ if }a\in X\\g\left(a\right)\text{ if }a\in Y\end{cases}\)
Let's check it's bijective
- Injective
Three cases
- \(a_1,a_2\in X\)
- \(a_1,a_2\in Y\)
-
\(a_1\in X,a_2\in Y\)
Consider \(h(a_1)=h(a_2)\Rightarrow f(a_1)=g(a_2)\Rightarrow\) Since \(f(a_1)\in X',g(a_2)\in Y'\) and \(X'\cap Y'=\empty\), then \(f(a_1)\) can never equal to \(g(a_2)\)
Thus if \(a_1\in X,a_2\in Y\), \(h(a_1)\neq h(a_2)\) * Surjective
-
\(y\in X'\)
Choose \(f(a)\) * \(y\in Y'\)
Choose \(g(a)\)
-
\(X\times Y\approx X'\times Y'\)
Define \(h:X\times Y\rightarrow X^{\prime}\times Y^{\prime}\) where \(h\left(x,y\right)=\left(x^{\prime},y^{\prime}\right)\) where \(x\in X,x'\in X'\) and \(y\in Y,y'\in Y'\)
Then we need to check it's bijective
-
Injective
Take \(h(x_1,y_1)=h(x_2,y_2)\), then \(\left(x_1^{\prime},y_1^{\prime}\right)=\left(x_2^{\prime},y_2^{\prime}\right)\Rightarrow x_1^{\prime}=x_2^{\prime},y_1^{\prime}=y_2^{\prime}\)
Then since \(f(x')=x,g(y')=y\) are bijective, then we have \(x_1=x_2,y_1=y_2\) 2. Surjective
For any \((x',y')\), there exists \(f(x')=x,g(y')=y\), such that \(h(x,y)=(x',y')\)
-
-
\(\text{Fun}(X,Y)\approx \text{Fun}(X',Y')\)
\(~~~X\quad\quad\quad~Y\\\approx~\downarrow~\alpha\quad\approx~\downarrow~\beta\\~~~X^{\prime}\quad\quad\quad Y^{\prime}\)
\(\Phi:\text{Fun}(X,Y)\rightarrow\text{Fun}(X^{\prime},Y^{\prime})\)
Given \(f:X\rightarrow Y\) we define \(\Phi(f):X'\rightarrow Y'\) as \(\Phi(f)=\beta\circ f\circ\alpha^{-1}\)
Let's check it is bijective
- Injective
Choose \(\Phi(f_1)=\Phi(f_2)\), then \(\beta\circ f_1\circ\alpha^{-1}=\beta\circ f_2\circ\alpha^{-1}\Rightarrow f_1\circ\alpha^{-1}=f_2\circ\alpha^{-1}\Rightarrow f_1=f_2\) * Surjective
For any \(f':X'\to Y'\), there exists \(f=\beta^{-1}\circ f^{\prime}\circ\alpha\) such that \(\Phi(f)=\beta\circ f\circ\alpha^{-1}\)
-
\(\text{Inj}(X,Y)\approx \text{Inj}(X',Y')\)
Similarly we define \(\Phi(f)=\beta\circ f\circ\alpha^{-1}\), then an extra step is to check it is injective
Take \(\Phi(f)\left(x_1\right)=\Phi(f)\left(x_2\right)\Rightarrow\beta\circ f_1\circ\alpha^{-1}\left(x_1\right)=\beta\circ f_2\circ\alpha^{-1}\left(x_2\right)\)
Since \(\beta\) and \(f\) and \(\alpha^{-1}\) are injective, then \(x_1=x_2\)
Proposition
If \(|X|=m,|Y|=n\), then \(X\times Y\) is finite \(|X\times Y|=mn\)
Proof
We have \(|X|\approx[m],Y\approx[n]\), then \(X\times Y\approx [m]\times[n]\)
Since this, then we know \([m]\times[n]=[mn]\). Thus \(|X\times Y|=mn\)
Corollary
If \(X_1,...,X_r\) are finite sets, \(|X_1\times X_2\times...\times X_{r}|=\left|X_1\right|\left|X_2\right|\cdot\ldots\cdot\left|X_{r}\right|\)
Proof
Use proposition and induction on \(r\)
On \(\text{Fun}(X,Y)\)
Suppose \(X=[n]\), then \(\text{Fun}([n],Y)\approx\left\lbrace\left(y_1,\ldots,y_{n}\right):y_{i}\in Y\right\rbrace=Y^{n}\)
Example:
If \(Y = \{a, b\}\) and \(n = 3\), then \(\text{Fun}([3], Y) = \{ (y_1, y_2, y_3) : y_1, y_2, y_3 \in \{a, b\} \} = \{(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b)\}.\)
In particular
Proposition
If \(|X|=n,|Y|=m\), then \(\text{Fun}(X,Y)\) is finite and \(|\text{Fun}(X,Y)|=m^n\)
Proof
Since \(\text{Fun}(X,Y)\approx\text{Fun}(\left\lbrack n\right\rbrack,Y)\approx Y^{n}\), then \(\text{Fun}(X,Y)\) is finite and \(\text{Fun}(X,Y)=\left|Y\right|^{n}=m^{n}\)
Example
Let \(X\) be any set and \(Y=\{0,1\}\) be any finite set, then \(\text{Fun}(X,\left\lbrace0,1\right\rbrace)=2^{\left|X\right|}=|\mathcal{P}(X)|\)
Proof
-
Define a map \(\Phi : \mathcal{P}(X) \to \mathrm{Fun}(X, \{0,1\})\) such that \(A\mapsto\chi_{A}\)
Then \(\chi_A : X \to \{0,1\}, \quad \chi_A(x) \;=\; \begin{cases} 1, & \text{if } x \in A,\\ 0, & \text{if } x \notin A. \end{cases}\)
-
Injectivity of \(\Phi\) . Suppose \(\Phi(A) = \Phi(B)\). That means \(\chi_A = \chi_B\). Then for every \(x\in X\),
\(\chi_A(x) = \chi_B(x).\)- If \(x \in A\), then \(\chi_A(x) = 1\). By equality, \(\chi_B(x)=1\), so \(x\in B\).
- If \(x \in B\), the same argument shows \(x \in A\).
Hence \(A = B\). Therefore \(\Phi\) is injective.
-
Surjectivity of \(\Phi\) . Take any function \(f \in \mathrm{Fun}(X, \{0,1\})\). Define \(A_f \;=\; \{\,x \in X : f(x) = 1\}.\)
Observe that \(\Phi(A_f)\) is exactly \(f\), because for each \(x \in X\), \(\chi_{A_f}(x) \;=\; \begin{cases} 1, & x \in A_f \text{ (i.e.\ }f(x)=1),\\ 0, & x \notin A_f \text{ (i.e.\ }f(x)=0). \end{cases}\)
Hence \(\chi_{A_f} = f\). This shows every function \(f\) in \(\mathrm{Fun}(X,\{0,1\})\) is hit by \(\Phi\), so \(\Phi\) is surjective.
-
Conclusion. Since \(\Phi\) is both injective and surjective, it is a bijection. Therefore, \(\bigl|\mathcal{P}(X)\bigr| \;=\; \bigl|\mathrm{Fun}(X,\{0,1\})\bigr| \;=\; 2^{\,|X|}.\)
On \(\text{Inj}(X,Y)\)
If \(X=[r]\), then \(\text{Inj}([r],Y)\approx\left\lbrace\left(y_1,\ldots,y_{r}\right)\in Y^{r}:y_{i}\neq y_{j}\quad\forall i\neq j\right\rbrace\)
Useful in combinatories
Example
\(Y=\) set of 10 people
Choose a list with 1 president, 1 vice-president, 1 vocal, 1 secretory
How many different lists are there?
Function: (1.president, 2.vice-president, 3.vocal, 4.secretory) \(\rightarrow\) (10 people)
We want to count \(|\text{Inj}([4],[10])|\)
Proposition
If \(|X|=r,|Y|=n\), then \(|\text{Inj}(X,Y)|=\frac{n!}{\left(n-r\right)!}\)
Proof
We can assume \(X=[r]\). So, \(\text{Inj}(X,Y)=\left\lbrace\left(y_1,\ldots,y_{r}\right)\in Y^{r}:y_{i}\neq y_{j}\quad\forall i\neq j\right\rbrace\)
Induction on \(r\)
Let \(r\in \N\). If \(n\geq r\) and \(|Y|=n\), then \(|\text{Inj}(X,Y)|=\frac{n!}{\left(n-r\right)!}\)
Case: \(r = 1\):
\(\text{Inj}([1],Y)=\{y\in Y\}=Y\) \(\Rightarrow |\text{Inj}([1], Y)| = |Y| = n = \frac{n!}{(n-1)!}\)
Let \(r \geq 1\) and assume that the result is true for \(r\).
We want to prove it for \(r+1\).
Given \(n \geq r+1\) and \(Y\) with \(|Y| = n\).
\(\text{Inj}([r+1],Y)\approx\{(y_1,\ldots,y_{r+1})\in Y^{r+1}:y_{i}\neq y_{j}\,\forall i\neq j\}\)
\(=\bigcup_{y\in Y}\{(y_1,\ldots,y_{r},y)\in Y^{r+1}:y_{i}\neq y_{j}\,\forall i\neq j,1\leq i,j\leq r,y_{i}\neq y,\forall i\}\)
\(=\bigcup_{y\in Y}\{(y_1,\ldots,y_{r})\in\left(Y-\left\lbrace y\right\rbrace\right)^{r}:y_{i}\neq y_{j}\,\forall i\neq j\}\)
\(\approx\bigcup_{y\in Y}\text{Inj}([r],Y-\{y\})\)
So \(|\text{Inj}([r+1],Y)|=\sum_{y\in Y}|\text{Inj}([r],Y-\{y\})|=\) H.I. \(\sum_{y\in Y}\frac{(n-1)!}{(n-1-r)!}\) \(= n \cdot \frac{(n-1)!}{(n-1-r)!}\)
\(=\frac{n!}{(n-(1+r))!}\)
So the result is true for \(r+1\) too. Hence the result is true \(\forall r \in \mathbb{N}\) by PMI.
Example
\(\text{Inj}([10],Y)=\{f:\{1,2,\dots,10\}\to Y\}\approx\{(y_1,y_2,\dots,y_{10}):y_{i}\neq y_{j}\,\forall i\neq j\}\) where \(f\mapsto\left(f(1),f(2),\ldots,f(10)\right)\)
Less formal proof
\(\text{Inj}([r],Y)=\{(y_1,...,y_r)\in Y^r:y_i\neq y_j,\forall i\neq j\}\)
There are \(n\) possibilities for \(y_1\). Once \(y_1\) is chosen, there are \(n-1\) possibilities for \(y_2\)
Once \(y_1,y_2\) are chosen, there are \(n-2\) possibilities for \(y_3\) and so on.......
Thus the total number is \(n\left(n-1\right)\left(n-2\right)\ldots\left(n-\left(r+1\right)\right)=\frac{n!}{\left(n-r\right)!}\)
Counting Permutations(Bijections)
Definition of Permutations
A permutation for \(X\) is a bijection \(\sigma:X\rightarrow X\). The set of all permutations is denoted \(S_X\). If \(X=[n]\), \(S_{[n]}\) is denoted \(S_n\)
Exercise
If \(X\approx X'\), then \(S_X\approx S_{X'}\)
Problem: \(|S_x|\) whom \(|X|=n=|X'|\)
Recall this, thus \(|S_{x}|=|\text{Inj}(X,X)|=\frac{n!}{\left(n-n\right)!}=n!\) the same as \(|S_{X'}|\)
Thus \(S_X\approx S_{X'}\)
Example
\(X=[3]\Rightarrow\left|S_{X}\right|=3!=6\)
\(x\) | \(\sigma_1(x)\) | \(\sigma_2(x)\) | \(\sigma_3(x)\) | \(\sigma_4(x)\) | \(\sigma_5(x)\) | \(\sigma_6(x)\) |
---|---|---|---|---|---|---|
1 | 1 | 1 | 2 | 2 | 3 | 3 |
2 | 2 | 3 | 1 | 3 | 1 | 2 |
3 | 3 | 2 | 3 | 1 | 2 | 1 |
Example
How many different ways can we organize 10 people in a row?
\(p_1,p_2,p_3,p_4,p_5,p_6,p_7,p_8,p_9,p_{10}\)
The answer is \(10!\)
Just use injective function cardinality
On the number of subsets of size \(r\)
\(|X|=n\), \(r\leq n\). \(\mathcal{P}_{r}\left(X\right)=\left\lbrace A\subseteq X:|A|=r\right\rbrace\subseteq \mathcal{P}(X)\)
Exercise: \(X\approx X^{\prime}\Rightarrow\mathcal{P}_{r}\left(X\right)\approx\mathcal{P}_{r}\left(X^{\prime}\right)\)
Definition of binomial
\(\binom{n}{r}:=|\mathcal{P}_r(X)|\) if \(|X|=n\)
Proposition
\(\binom{n}{r}=\frac{n!}{r!\left(n-r\right)!}\)
Proof
N.T.P. \(\binom{n}{r}=\frac{n!}{r!\left(n-r\right)!}\), that means we need to prove \(|\mathcal{P}_{r}(X)|=\frac{n!}{r!\left(n-r\right)!}\)
We want use the fact, then we need to express \(\mathcal{P}_{r}(X)\) as an injection
Since \(\mathcal{P}_{r}\left(X\right)=\left\lbrace A\subseteq X:|A|=r\right\rbrace\subseteq \mathcal{P}(X)\), then define \(\pi:\text{Inj}(\left\lbrack r\right\rbrack,X)\rightarrow \mathcal{P}_{r}(X)\) where \((x_1,...,x_r)\mapsto \{x_1,...,x_r\}\)
But this is not bijective, and the cardinality is not same since the left hand has order but right hand does not have
Then we define \(\pi:\text{Inj}(\left\lbrack r\right\rbrack,X)\rightarrow S_{\mathcal{P}_{r}(X)}\) where \((x_1,...,x_{r})\mapsto\text{ the permutations of }\{x_1,...,x_{r}\}\)
This is bijective! (proof?)
\(f\to(f(1),f(2),...,f(r))\)
Then let \(|X|=n\), we know \(|\text{Inj}(\left\lbrack r\right\rbrack,X)|=\frac{n!}{\left(n-r\right)!}\approx\) \(\left|S_{\mathcal{P}_{r}(X)}\right|=r!\left|\mathcal{P}_{r}(X)\right|\)
Thus \(\left|\mathcal{P}_{r}(X)\right|=\frac{n!}{r!\left(n-r\right)!}\)