Exercise 1. In each case, give an example of denumerable sets A and B, neither of which is a subset of the other, such that

- (a) $A \cap B$ is denumerable.
- (b) $A \cap B$ is finite.
- (c) A B is denumerable.
- (d) A B is finite and nonempty.

Exercise 2. Let $\mathbb{Q}[x]$ be the set of polynomials $a_n X^n + \cdots + a_1 X + a_0$ with rational coefficients a_n, \ldots, a_0 . Prove that $\mathbb{Q}[X]$ is denumerable.

Exercise 3. (a) Write a bijection between [0, 1) and (0, 1).

(b) Write a bijection between $\mathbb{R} \sim (\mathbb{R} - \mathbb{Z})$.

Exercise 4. (a) Prove that every infinite set X contains a denumerable subset.

- (b) Prove that if B is denumerable and $A \subset B$ is a subset such that B A is infinite, then $B \sim (B A)$.
- (c) Prove that if X is uncountable and $A \subset X$ is a denumerable subset, then $X \sim (X A)$.