Exercise 1. (25 points) Let $f : A \to B$ and $g : C \to D$ be functions. Define a relation $f \times g \subset (A \times C) \times (B \times D)$ as $f \times g = \{((a, c), (b, d)) : f(a) = b, g(b) = d\}.$

- (a) Prove that $f \times g$ is a function from $A \times C$ to $B \times D$ and compute
- (b) Prove that the function $h : \mathbb{N}^2 \to \mathbb{N}^2$ given by $h(m, n) = (m^2, n+1)$ is of the form $f \times g$ for some functions $f, g : \mathbb{N} \to \mathbb{N}$.
- (c) Give an example of a function $h : \mathbb{N}^2 \to \mathbb{N}^2$ that is not of the form $f \times g$.

Exercise 2. (25 points) Let

$$f(x) = \left\{ \begin{array}{ccc} 2x+3 & \text{if } x < 3 \\ x^2 & \text{if } x \ge 3 \end{array} \right., \quad g(x) = \left\{ \begin{array}{ccc} 7-2x & \text{if } x \le 2 \\ x+1 & \text{if } x > 2 \end{array} \right.$$

- (a) Which one is injective, which one is surjective?, which one is bijective? Justify
- (b) Compute $g \circ f$ and $f \circ g$.

Exercise 3. (25 points) For each of the following functions $f : A \to \mathbb{R}$, show that they are one to one, compute $\operatorname{Im}(f)$, and find a formula for the inverse $f^{-1} : \operatorname{Im}(f) \to A$.

(a)
$$f: (-2, \infty) \to \mathbb{R}$$
 given by $f(x) = \frac{4x}{x+2}$

(b)
$$f: (3,\infty) \to \mathbb{R}$$
 given by $\frac{5(x-1)}{x-3}$.

Exercise 4. (25 points) Decide if the following sentences are true or false. When they are true, give a proof. When they are false, give a counterexample.

- (a) Every function $f: A \to A$ is injective or surjective.
- (b) If $f: A \to A$ satisfies $f^2 = id_A$ then f is bijective.
- (c) If $f: A \to B$ and $g: B \to A$ are functions such that $g \circ f = id_A$ then f is bijective.
- (d) There is a bijective function $f : \mathbb{N} \to \mathbb{Z}$.