Exercise 1. (25 points) In each of the following cases, compute the reminder of the division of x by m.

- (a) $x = 22 \cdot 11 \cdot 2024, m = 3.$
- (b) $x = 9^{9 \cdot 23}, m = 7.$

Exercise 2. (25 points)

- (a) Describe all possible partitions of the set $A = \{1, 2, 3, 4\}$.
- (b) How many different equivalence relations can be defined on A?

Exercise 3. (25 points) Define \leq on \mathbb{N}^2 as follows:

$$(m,n) \leq (m',n')$$
 iff $m|m' \wedge n|n'$

- (a) Prove that \leq is a partial order.
- (b) Prove that a non-empty subset of \mathbb{N}^2 has an upper bound if and only if it is a finite set (a set with a finite number of elements).

Exercise 4. (25 points) Let \leq be the lexicographical order on \mathbb{N}^2 , that is,

 $(m,n) \leq (m',n')$ iff m < m' or $m = m' \land n \leq n'$.

- (a) Prove that \leq is a total order.
- (b) Find an element different from (1,1) without an immediate predecessor.
- (c) Prove that any non-empty subset of \mathbb{N}^2 has a first element (that is, a minimum).