4 Relation
Homework 4 Basic Concepts in Mathematics - 104002
Guangdong Technion
Yue Shi 999027873
Exercise 1. (25 points) Let \(R \subset A \times B\) and \(S \subset B \times C\) be two relations. Prove that \((S \circ R)^{-1} = R^{-1} \circ S^{-1}\).
Proof
-
Right hand
Since \(R^{-1}=\{(b,a)\in B\times A:aRb\}\subset B\times A\) and \(S^{-1}=\{(c,b)\in C\times B:bSc\}\subset C\times B\)
Then \(R^{-1}\circ S^{-1}=\{(a,c)\in C\times A:\exists b\in B\text{ such that }aRb\text{ and }bSc\}\subset C\times A\) by definition
-
Left hand
Since \(R \subset A \times B\) and \(S \subset B \times C\) are two relations, by definition \(S\circ R=\{(a,c)\in A\times C:\exists b\in B\text{ such that }aRb\text{ and }bSc\}\subset A\times C\)
Then \((S\circ R)^{-1}=\{(c,a)\in C\times A:\exists b\in B\text{ such that }aRb\text{ and }bSc\}\subset C\times A\)
Thus \((S \circ R)^{-1} = R^{-1} \circ S^{-1}\)
Exercise 2. (25 points) Let \(A = \{a, b, c, d\}\). Find a relation on \(A\) that is
-
reflexive and symmetric but not transitive.
\(R=\{\left(a,a\right),\left(b,b\right)\left(c,c\right),\left(d,d\right),\left(a,b\right),\left(b,a\right),\left(b,c\right),\left(c,b\right)\}\)
- Reflexive: \((a,a),(b,b),(c,c),\left(d,d\right)\)
- Symmetric: If \((a,b)∈R\), then \((b,a)∈R\). Similar for others
- Not transitive: \((a,b)∈R\) and \((b,c)∈R\), but there is no \((a,c)\in R\)
-
reflexive and transitive but not symmetric.
\(R=\{\left(a,a\right),\left(b,b\right)\left(c,c\right),\left(d,d\right),\left(a,b\right),\left(b,c\right),\left(a,c\right)\}\)
- Reflexive: \((a,a),(b,b),(c,c),\left(d,d\right)\)
- Transitive: \((a,b)∈R\) and \((b,c)∈R\), there is \((a,c)\in R\)
- Not symmetric: \((a,b)∈R\), but \((b,a)∉R\)
-
symmetric and transitive but not reflexive.
\(R=\left\lbrace\left(a,a\right)\right\rbrace\)
- Symmetric: If \((a,a)\in R\), then \((a,a)\in R\)
- Transitive: \((a,a)\in R\) and \((a,a)\in R\), there is \((a,a)\in R\)
- Not reflexive: there is no \((b,b),\left(c,c\right),\left(d,d\right)\in R\)
Exercise 3. (25 points) Define a relation \(\sim\) on \(\mathbb{Z} \times \mathbb{N}\) as follows: \((a, b) \sim (a', b')\) iff \(ab' = a'b\).
Prove that \(\sim\) is an equivalence relation.
- Reflexive: \((a,b)\sim(a,b)\) iff \(ab=ab\) yes
- Symmetric: if \((a, b) \sim (a', b')\) iff \(ab' = a'b\), then we have \(a^{\prime}b=b^{\prime}a\), which is \((a^{\prime},b^{\prime})\sim(a,b)\) yes
- Transitive: if \((a, b) \sim (a', b')\) iff \(ab' = a'b\) and \((a^{\prime},b^{\prime})\sim(a'',b'')\) iff \(a^{\prime}b''=b^{\prime}a''\), then we have \(\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}\) and \(\frac{a^{\prime}}{b^{\prime}}=\frac{a''}{b''}\).
Thus \(\frac{a}{b}=\frac{a''}{b''}\), then \(ab'' = a''b\), which is \((a, b) \sim (a'', b'')\) yes
Thus \(\sim\) is an equivalence relation.
Exercise 4. (25 points) Name a positive integer and a negative integer that are
If in some case it is not possible, explain why.
-
congruent to \(0 \pmod{7}\) but not congruent to \(0 \pmod{8}\).
The number is the multiple of \(7\) but not the multiple of \(8\)
Then \(x=7k(k\neq 8n,n\in\N)\)
Thus the positive integer is \(7\), the negative number is \(-7\)
-
congruent to \(3 \pmod{7}\) and congruent to \(4 \pmod{8}\).
The number \(x-3\) is the multiple of \(7\) and \(x-4\) is the multiple of \(8\)
Then \(x-3=7k,x-4=8n\Rightarrow x=7k+3,x=8n+4\)
Thus \(7k+3=8n+4\Rightarrow8n=7k-1\Rightarrow n=\frac{7k-1}{8}\)
Thus we can choose \(k=7,n=6\) to get the positive integer
We can choose \(k=-1,n=-1\) to get the negative integer
Thus the positive integer is \(52\), the negative number is \(-4\)
-
congruent to \(0 \pmod{5}\) and congruent to \(2 \pmod{6}\).
The number \(x\) is the multiple of \(5\) and \(x-2\) is the multiple of \(6\)
Then \(x=5k,x-2=6n\Rightarrow x=5k,x=6n+2\)
Thus \(5k=6n+2\Rightarrow6n=5k-2\Rightarrow n=\frac{5k-2}{6}\)
Thus we can choose \(k=4,n=3\) to get the positive integer
We can choose \(k=-2,n=-2\) to get the negative integer
Thus the positive integer is \(20\), the negative number is \(-10\)
-
congruent to \(3 \pmod{4}\) and congruent to \(4 \pmod{6}\).
The number \(x-3\) is the multiple of \(4\) and \(x-4\) is the multiple of \(6\)
Then \(x-3=4k,x-4=6n\Rightarrow x=4k+3,x=6n+4\)
Thus \(4k+3=6n+4\Rightarrow6n=4k-1\Rightarrow n=\frac{4k-1}{6}\)
However, \(4k-1\) must be an odd number and \(6n\) must be a even number
Thus we never can choose a proper integer to satisfy it.
Thus this statement is impossible