Student Feedback Report

 Student Id
 999027873

 Exam Id
 202411181040025

 Exam Date
 Monday, Nov 18, 2024

 Course Id
 202401-104002-5

Course Name BASIC CONCEPTS IN MATHEMATICS - Mid

Lecturer Diego Armando SULCA

Open question score
Original Exam Grade
Final Exam Grade
79.00
79.00

Summary

Question number	Actual points	Max points
1	10.00	20.00
2	20.00	20.00
3	20.00	20.00
4.1	7.00	7.00
4.2	6.00	7.00
4.3	6.00	6.00
5.1	7.00	7.00
5.2	3.00	7.00
5.3	0	6.00

× Incorrect answer

Not answered

(64)

ID 999027873

Exam 202411181040025

Basic Concepts in Mathematics 104002

Midterm November 18, 2024

Your ID Number:	17	
-----------------	----	--

999027873

Your Name:

Yve SHi

Guidelines

- **Duration: 2 hours.** Use of calculators, personal dictionaries, electronic devices, reference materials, personal notes or any other extra material is not allowed.
- Show all your work. Explain your solutions, quote theorems you are using.
 No credit will be given for non-justified answers!
 Write clear and complete answers for each problem in the same page.

 $(\equiv \text{means "is equivalent to"}).$ We need to prove two directions first, ne prove (P=> (YXEU)Q(X))=> (YXEU)(P=>Q(X)) nel have P=7(4xeu)Q(x) (VXEV)Q(X), then for all XEV-Q(X) is true there was Loble Truth (AXE)) (txeU) D=7(4xeU)\$(N) Since P=7(txEU)Q(X), there we know (txEU)Q(X) means D(X) is always true (since V is universe) then Then I is true, then the or true DCK) is an open propasition on he have (FREY)QCX) where Visa universe then we know Q(X) is always true. Thus (PE) (MEU) Q(X) = PE) Q(X) ON Dunken x me take, then and its three or false don't depend See Next Thus (P=>(xxxu)Q(x)) = (xxxu)(P=>Q(x))

1. Let P be a proposition, let Q(x) be an open proposition and let U be a universe. Prove that

 $(P \Rightarrow (\forall x \in U)Q(x)) \equiv (\forall x \in U)(P \Rightarrow Q(x))$

Since Q(X) is an open proposition thus for some XEAEU. Q(X) is true onth for XEBEU. Q(X) is false CAUSE
Since (4xeV) D(K), thus for XG U, Q(X) is true by definiting The quantified proposition can be true or false, you don't have to assume that it is true
Thus Q A=V, B=q. then Q(X) is always true whatever
e take x.
aus 17
thee Pis a proposition, then it has goly definitly true or ilse that be don't depend on which your take.
en If Pis true, re home[true => true] is true. (If Pis false, re home [folse=> true] is true.
=> (AKEN) O(X)
1 for 0 (VXEU) (P=7Q(X))
the If 7 is true, then Q(X) can be true or false.
Let $P = 70(X) = M(X)$ It is not ok to say that a for all sentence is true by just my looking to what happen with just one x $V(X) = 70(X) = M(X)$ It is not ok to say that a for all sentence is true by just my looking to what happen with just one x $V(X) = 70(X) = M(X)$ It is not ok to say that a for all sentence is true by just my looking to what happen with just one x $V(X) = 70(X) = M(X)$ $V(X) = 70(X) = 100(X)$ $V(X) = 70(X)$ $V(X) = $
en (treu)(P=72(x)) is true. thus, if P is town (treu)M(x).
P's false P=7Q(X) is always for true. thus (+xeu)(p=7Q1) This part is ok [salways frue] P=7(+xeu)Q(X) and 3+xeu) (P=7Q(X)) salways frue.

(2)

2. Prove the following equality for all $n \in \mathbb{N}$.

$$\prod_{i=1}^{n} (2i - 1) = \frac{(2n)!}{n!2^n}$$

We use induction to prove it

Basic step. when
$$n=1$$
, $\prod_{i=1}^{n} (2i-1) = \prod_{i=1}^{n} (2i-1) = 2-1=1$

$$\frac{(2n)!}{n!2^n} = \frac{2!}{1!2!} = \frac{2}{1\times 2} = 1$$

Thus when n=1, $\frac{h}{1!}(2i-1)=\frac{(2n)!}{n!62^n}$

Inductive step. Suppose it is true for n, then $f(2i-1) = \frac{(2n)!}{n! 2^n}$ (Hypothesis)

Then for ntl, we have
$$\prod_{i=1}^{n+1} (2i-1) = \prod_{i=1}^{n} (2i-1) [(2n+1)-1)$$

$$= \prod_{i=1}^{n} (2i-1) [(2n+1)]_{2}$$

Then we use hypothesis here.

$$= \frac{(2n)!}{n! 2^{n}} \times (2n+1) = \frac{(2n)! \times (2n+1)(2n+2)}{(2n+2)! n! 2^{n}} = \frac{(2(n+1))!}{2n \cdot n! \cdot 2^{n} + 2n! \cdot 2^{n}}$$

$$=\frac{(2(n+1))!}{n \cdot n! \cdot 2^{n+1}} = \frac{(2(n+1))!}{(2(n+1))!} = \frac{(2(n+1))!}{(n+1)!} = \frac{(2(n+1))!}{(n+1)!} = \frac{(2(n+1))!}{(n+1)!}$$

Thus it is also tree for not.

Since the equality is true forn, the we can imply that it is also true for not.

Thus the equality is tree for all NEN

3. (20 points) Define a sequence (a_n) as follows:	
$a_1 = 3$, $a_2 = 9$, and $a_{n+1} = 5a_n - 6a_{n-1}$, $\forall n \ge 2$	
Prove that $a_n \equiv 3^n$ for all n . (Strong)	
Basic step: Since n72. then when n=33 since ani= 5an-6an-1, then a3=502-60,	
Since a:= 3. a== 9 then a= 27	
By $an=3^n$, ne know $a_3=3^3=27$. Thus $a_{n=3}^n$ is $transpoons to the second of t$	e -
Inductive step. Suppose it is tree for n=[3,m]. 3=(<n, (hypothes,="" 1,2?<="" 3<(sn,="" ak="3." don't="" for="" kez="" s)="" td="" then="" why=""><td>_</td></n,>	_
Then we need for ntl, we have an Sant Jan	
ne reed to prove and and = 3 not	
Since anti=5an-6an-1, then we use hypothesis here to	
substituete an and an-1.	
Then $a_{n+1} = 5x3^{n} - 6x3^{n-1} = 5x15x3^{n-1} - 6x3^{n-1} = 9x3^{n-1} = 9x3^{n-1} = 3$	
Thus it is true for not.	
Since if it is to an=3" is true for 35/51, KGZ, Me can imply it is true for ntl.	า
thus an=3 is true for n=2 (2011)	
1 () () () () () () () () ()	
hen $n=1$, $\alpha_1=3$ and $\alpha_{i=3}=3$, true (20)	

n=2, $\alpha_{2}=9$, and $\alpha_{2}=3=9$, true. Finally, an=3 is tree true for allown.

- **4.** (20 points) Let R be the relation on the set of real numbers \mathbb{R} given by xRy if and only if $x-y\in\mathbb{Z}$. (a) Prove that R is an equivalence relation.
 - (b) Prove that any $x \in \mathbb{R}$ is equivalent to one and only one number in the half-open interval [0,1).
 - (c) Is (a) true if we replace \mathbb{Z} by the set $\{-2024, -2023 2022, \dots, 2022, 2023, 2024\}$?

(a) To prove R is an equivalence relation.
We need to check three things

1. Reflexivity: since X-X=0CZ, then by definition of R. we have xROX is tre

2. Symmetry: Since if x-y & Z. then -(x-y) & Z. then y-x& Z.

Thus we have [if Ry, then yRx.] is true

3. Transitivity: Since if x-y & Z. and y-z&Z, then we know

X-y=m, mEZ. and y-z=n, nGZ.

Then X=mty and #Z=y-n=>, X-Z=mty-ytn=mty
She min & Z. Hen X-2ZGZ

thus [if x Dy w]. He 2 - 2 - 1 + 1 = 1

Thus three property ies are satisfied therefore Ris an equivalence

Ob) let's take only REDR. SINCE #49 GR. by definition of R

First. ext existence,

Take any XER. ne reed to find y such that XRY

this were need to find you such x-y EZ

Hyeto, 1), we are dore. Thus consider y=X-[X].

Hyeto, 1), Hen Let's deck it works

X-y= X- K+[x] =[x] &[0,1)8 V.

then, uniquoness, Suppose we confirm the yETO, I), and y'ETO, I) then we have X-y &Z and X-y &Z Then * x-y=m (mcz) and * x-y'=n(ncz) (m/n since y/y') y = x - m or y' = x - n. so you assume y-y` positive Stace Then y-y'=-mth > 1. since min GR (6.2) Thus y = Hy'. contradiotion. Finally, there is a migue yell, 1) such that XRy (c) xPy => x-y = [-2024, ..., 2024]. , \$ x,y = R. 1. Reflexivity: x-X=0G[-2024, ..., 2024]. thus X2x V 2. Symmetry: If X-y & [-2024, ..., 2024]., then y-x & [-(-2024), ..., -2024] Thus XRy=74RX 3. Transtirity. (f X-y = \$12024,..., 2024). and y-Z = (-2024,..., 2024), Then X-y=m EE-2024, ..., 2024), and y-z=n E[-2024, -ing then X=m+y and z=y-n. then X-Z= mty-ytn=m+n. which is not be in f-on, (oubter example: X-y=2024, y-2=2024. But X-2=4048 & (-614, --, 2024). Thus it is not the true

 Suppose of the prove of suppose of the some of the prove of the exists the first element of the exists the prove of the exists the first element of the exists the exists the first element of the exists the exist the exists the exists the exist the exists the exists the exist the exists the exist the exist the exist the exist the exist the exists the exist the exist

