

Guangdong Technion

Israel Institute of Technology

广东以色列理工学院

Algebra A

WINTER 2024

TUTORIALS AND WORKSHOPS

Lecturer: Paulo Tirao Tutor: Camila Aagaard

WEEK 1

TUTORIALS

- 1) Let $\mathbb F$ be a field. Prove the following properties:
- (a) a.0 = 0 for every $a \in \mathbb{F}$.
- (b) If a.b = 0 for $a, b \in \mathbb{F}$, then a = 0 or b = 0.
- (c) -(a+b) = -a + (-b) for every $a, b \in \mathbb{F}$.
- (d) $(a.b)^{-1} = (b^{-1}).(a^{-1})$ for every $a, b \in \mathbb{F}$.

2) For an arbitrary set \mathbb{F} of 4 elements find (if possible) addition and multiplication tables such that \mathbb{F} is a field. Are there any other possible tables?

- 3) Consider the field $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
- (a) Find $(1 \sqrt{2})^{-1}$.
- (b) Calculate $\left(\frac{3}{2} + \sqrt{2}\right)^2 (1 \sqrt{2})^{-1} + \left(\frac{1}{2} + \frac{5}{4}\sqrt{2}\right).$
- 4) Consider the fields \mathbb{Z}_5 and \mathbb{Z}_{13} .
- (a) Find $4.(3^{-1}) + 2.(-6) + 3$ in \mathbb{Z}_5 .
- (b) Find $4.(3^{-1}) + 2.(-6) + 3$ in \mathbb{Z}_{13} .
- 5) Roots of unity.
- (a) Find the cube roots of unity, i.e. all complex numbers z such that $z^3 = 1$.
- (b) If ω is a cube root of unity, find the value of ω^{67} .
- (c) Find the sixth roots of unity, i.e. all complex numbers z such that $z^6 = 1$.

6) Let
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 0 & 6 \end{pmatrix} \in M_{2 \times 3}(\mathbb{Z}_7), B = \begin{pmatrix} 1 & 5 \\ 2 & 0 \\ 4 & 1 \end{pmatrix} \in M_{3 \times 2}(\mathbb{Z}_7) \text{ and } C = \begin{pmatrix} 23 & 65 \\ 14 & 6 \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}_7)$$

Calculate $A.B + C$.

7) Show that $A = \begin{pmatrix} 4 & 5 \\ 1 & 6 \end{pmatrix}$ has an inverse in $M_{2 \times 2}(\mathbb{R})$ and write down the inverse explicitly.

8) Find the values of $a, b \in \mathbb{R}$ such that the remainder of the polynomial division of $p(x) = 3x^3 + 4x^2 - 2ax + b$ by $q(x) = x^2 + x + 1$ is r(x) = -4x + 2.

9) Let $p(x) = x^5 + x^4 + 2x^2 + 1$ and $q(x) = 2x^3 + x^2 + 1$. Find the remainder of the polynomial division of p(x) by q(x) in $\mathbb{Z}_3[x]$.

WORKSHOP

- 1) Calculate $(1+i)^{-5}$.
- 2) Let $A = \begin{pmatrix} 3 & -6 \\ -1 & 2 \end{pmatrix}$. Find a 2 × 2 matrix B such that AB = 0.
- 3) Find the inverse of the matrix $A = \begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}_{11}).$
- 3) Find all the roots of $p(x) = 5x^4 15x^2 20$ and their multiplicities.