

Guangdong Technion

Israel Institute of Technology

广东以色列理工学院

Algebra A

WINTER 2024

TUTORIALS AND WORKSHOPS

Lecturer: Paulo Tirao Tutor: Camila Aagaard

WEEK 1

TUTORIALS

- 1) Let $\mathbb F$ be a field. Prove the following properties:
- (a) a.0 = 0 for every $a \in \mathbb{F}$.
- (b) If a.b = 0 for $a, b \in \mathbb{F}$, then a = 0 or b = 0.
- (c) -(a+b) = -a + (-b) for every $a, b \in \mathbb{F}$.
- (d) $(a.b)^{-1} = (b^{-1}).(a^{-1})$ for every $a, b \in \mathbb{F}$.

2) For an arbitrary set \mathbb{F} of 4 elements find (if possible) addition and multiplication tables such that \mathbb{F} is a field. Are there any other possible tables?

- 3) Consider the field $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
- (a) Find $(1 \sqrt{2})^{-1}$.
- (b) Calculate $\left(\frac{3}{2} + \sqrt{2}\right)^2 (1 \sqrt{2})^{-1} + \left(\frac{1}{2} + \frac{5}{4}\sqrt{2}\right).$
- 4) Consider the fields \mathbb{Z}_5 and \mathbb{Z}_{13} .
- (a) Find $4.(3^{-1}) + 2.(-6) + 3$ in \mathbb{Z}_5 .
- (b) Find $4.(3^{-1}) + 2.(-6) + 3$ in \mathbb{Z}_{13} .
- 5) Roots of unity.
- (a) Find the cube roots of unity, i.e. all complex numbers z such that $z^3 = 1$.
- (b) If ω is a cube root of unity, find the value of ω^{67} .
- (c) Find the sixth roots of unity, i.e. all complex numbers z such that $z^6 = 1$.

6) Let
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 0 & 6 \end{pmatrix} \in \mathcal{M}_{2 \times 3}(\mathbb{Z}_7), B = \begin{pmatrix} 1 & 5 \\ 2 & 0 \\ 4 & 1 \end{pmatrix} \in \mathcal{M}_{3 \times 2}(\mathbb{Z}_7) \text{ and } C = \begin{pmatrix} 23 & 65 \\ 14 & 6 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{Z}_7).$$

Calculate $A.B + C.$

7) Show that $A = \begin{pmatrix} 4 & 5 \\ 1 & 6 \end{pmatrix}$ has an inverse in $M_{2\times 2}(\mathbb{R})$ and write down the inverse explicitly.

8) Find the values of $a, b \in \mathbb{R}$ such that the remainder of the polynomial division of $p(x) = 3x^3 + 4x^2 - 2ax + b$ by $q(x) = x^2 + x + 1$ is r(x) = -4x + 2.

9) Let $p(x) = x^5 + x^4 + 2x^2 + 1$ and $q(x) = 2x^3 + x^2 + 1$. Find the remainder of the polynomial division of p(x) by q(x) in $\mathbb{Z}_3[x]$.

10) Show that $p(x) = x^3 + x^2 + x + 1$ is divisible by q(x) = x + 3 in $\mathbb{Z}_5[x]$ but not in $\mathbb{Z}[x]$.

WORKSHOP

- 1) Calculate $(1+i)^{-5}$.
- 2) Let $A = \begin{pmatrix} 3 & -6 \\ -1 & 2 \end{pmatrix}$. Find a 2 × 2 matrix B such that AB = 0.
- 3) Find the inverse of the matrix $A = \begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}_{11}).$
- 4) Find all the roots of $p(x) = 5x^4 15x^2 20$ and their multiplicities.

WEEK 2

TUTORIALS

1) Check whether the following sets V with the defined operations are vector spaces over \mathbb{F} or not. If not, what property fails?

(a) Let
$$V = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \colon x \ge 0, y \ge 0 \right\}$$
 and $\mathbb{F} = \mathbb{R}$ with $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} x + w \\ y + z \end{pmatrix}$ and $c \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cx \\ cy \end{pmatrix}$.

(b) Let
$$V = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \colon xy \ge 0 \right\}$$
 and $\mathbb{F} = \mathbb{R}$ with $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} x+w \\ y+z \end{pmatrix}$ and $c \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cx \\ cy \end{pmatrix}$.

(c) Let $V = M_n(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$ with $A + B = \frac{1}{2}(AB + BA)$ and $\alpha A = 0$.

- (d) Let X be an arbitrary set and $\mathcal{P}(A) = \{A : A \subseteq X\}$ the power set of X. Consider $V = \mathcal{P}(A)$ and $\mathbb{F} = \mathbb{Z}_2$ with $A + B = (A \setminus B) \cup (B \setminus A)$ and $0.A = \emptyset$, 1.A = A.
- (e) Let $V = \emptyset$ and any field \mathbb{F} with any operations.

2) In the definition of a vector space V, show that the additive inverse condition can be replaced with the condition that 0.v = 0 for all $v \in V$.

- 3) Consider the real vector space \mathbb{R}^3 with the usual operations.
- (a) Is it possible to write the vector $0 = (0, 0, 0) \in \mathbb{R}^3$ in the form

$$0 = a.(2,2,2) + b.(0,0,3) + c.(0,1,1),$$

with $a, b, c \in \mathbb{R}$ not all zero?

(b) Is it possible to write any vector $v = (v_1, v_2, v_3) \in \mathbb{R}^3$ uniquely in the form

$$v = a.(2,2,2) + b.(0,0,3) + c.(0,1,1),$$

with $a, b, c \in \mathbb{R}$?

(c) Is it possible to write the vector $u = (-1, 2, -1) \in \mathbb{R}^3$ in the form

$$u = a.(1, 2, 3) + b.(1, 0, 2),$$

with $a, b \in \mathbb{R}$?

(d) Is it possible to write any vector $v = (v_1, v_2, v_3) \in \mathbb{R}^3$ uniquely in the form

$$v = a.(1,2,3) + b.(1,0,2) + c.(-1,2,-1),$$

with $a, b, c \in \mathbb{R}$?

4) Consider the real vector space given by $V = \{p \in \mathbb{R}[x] : \deg(p) \leq 2\}$ with the usual operations. We take $p_1(x) = 2 - x + 3x^2$, $p_2(x) = 1 + 4x + 2x^2$ and $p_3(x) = 8 - 10x + x^2$ polynomials in V. Is it possible to write the polynomial $0 \in V$ in the form

$$0 = a.p_1(x) + b.p_2(x) + c.p_3(x),$$

with $a, b, c \in \mathbb{R}$ not all zero?

- 5) Consider the vectors u = (1, 2, 3) and v = (2, 3, 1) in the real vector space \mathbb{R}^3 .
- (a) Find $k \in \mathbb{R}$ so that w = (1, k, 4) is a linear combination of u and v.
- (b) Find conditions on a, b, c so that w = (a, b, c) is a linear combination of u and v.

6) Consider the real vector space $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is a function}\}$ and the functions $cos, sin, id_{\mathbb{R}} \in V$. Show that if we have a linear combination of these elements in V equal to the zero function $0 \in V$ as in:

$$0 = a.cos + b.sin + c.id_{\mathbb{R}}$$

then a = b = c = 0 necessarily.

7) Consider the complex vector space \mathbb{C}^3 and $v_1 = (1, 1+i, i)$, $v_2 = (i, -i, 1-i)$ and $v_3 = (0, 1-2i, 2-i)$ vectors in \mathbb{C}^3 .

(a) Is it possible to write one of these three vectors as a linear combination with coefficients in \mathbb{R} of the other two? In other words, is it possible to write

$$0 = a.v_1 + b.v_2 + c.v_3,$$

with $a, b, c \in \mathbb{R}$ not all zero?

(b) Is it possible to write one of these three vectors as a linear combination with coefficients in \mathbb{C} of the other two? In other words, is it possible to write

$$0 = a.v_1 + b.v_2 + c.v_3,$$

with $a, b, c \in \mathbb{C}$ not all zero?

- 8) Show that the following vector spaces share the same structure (i.e. their operations behave "the same"):
- (a) $M_2(\mathbb{R})$ and \mathbb{R}^4 as real vector spaces with the natural addition and scalar multiplication operations.
- (b) \mathbb{R}^4 and $P_3 = \{p \in \mathbb{R}[x]: \deg(p) \leq 3\}$ as real vector spaces with the natural addition and scalar multiplication operations.

WORKSHOP

1) Let $V = \mathbb{R}^2$ and $\mathbb{F} = \mathbb{R}$. Consider the following operations on V:

 $\begin{array}{l} (x,y)\oplus(w,z)=(x+w+1,y+z+1)\\ a\odot(x,y)=(ax,ay) \end{array}$

Which of the axioms for a vector space are satisfied by (V, \oplus, \odot) ?

2) Let X be a set and \mathbb{F} a field. Show that the set $V = \{f : X \to \mathbb{F} : f \text{ is a function}\}$ is a vector space over \mathbb{F} with the addition (f + g)(x) = f(x) + g(x) and the scalar multiplication (af)(x) = af(x).

- 3) Consider V a vector space over the field \mathbb{F} . Prove the following statements:
- (a) -(-v) = v for every $v \in V$.
- (b) (-c).v = c.(-v) = -(c.v) for every $v \in V$ and $c \in \mathbb{F}$.
- (c) If v + w = u + w for some $v, w, u \in V$, then v = u.

4) Consider the real vector space $M_2(\mathbb{R})$ with the usual operations. Is $A = \begin{pmatrix} 34 & 8\\ 6 & -19 \end{pmatrix}$ a linear combination of $B = \begin{pmatrix} 5 & 1\\ 0 & -2 \end{pmatrix}$ and $C = \begin{pmatrix} 3 & 1\\ 2 & -3 \end{pmatrix}$?