1.8
Revision
-
Decide if the following statements are true or false.
-
Let \(\mathbb{F}\) be a field and \(a \in \mathbb{F}\). If \(\exists n \in \mathbb{N}\) such that \(a^n = 0\), \(\big( \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}} = 0 \big) \implies a = 0\)
True.
- If \(n = 1\), \(a = 0\) trivially.
- If \(n = 2\), \(a \cdot a = 0 \implies a = 0\) or \(a = 0\). So \(a = 0\). (Exercise from the first week.)
- If \(n = 3\), \(a^2 \cdot a = 0 \implies a^2 = 0\) or \(a = 0 \implies a = 0\).
- In this way, recursively, if \(a^n = 0 \implies a^{n-1} \cdot a = 0 \implies a^{n-1} = 0\) or \(a = 0 \implies \dots \implies a = 0\).
- Let \(\mathbb{F}\) be a field and \(a \in \mathbb{F}\). If \(n \cdot a = 0\), \(\big( n \cdot a = \underbrace{a + a + \dots + a}_{n \text{ times}} \big) \implies a = 0\).
FALSE: Let's give a counterexample.
Think of \(\mathbb{F} = \mathbb{Z}_p\) for \(p\) prime and \(1 \in \mathbb{Z}_p\)\(\implies p \cdot 1 = 1 + \dots + 1 = p = 0\) in \(\mathbb{Z}_p\), but \(1 \neq 0\) in \(\mathbb{Z}_p\). 3. Let \(\mathbb{F}\) be a field. If \(a \in \mathbb{F} \setminus \{0\}\), \(n \in \mathbb{N}\) such that \(n \cdot a = 0 \implies n \cdot x = 0 \ \forall x \in \mathbb{F}\).
TRUE: We have that \(n \cdot a = 0\).
Now, let \(x \in \mathbb{F}\), we have that \(n \cdot x = x + \dots + x = \big( (a a^{-1}) x + \dots + (a a^{-1}) x \big) = a \big( a^{-1} x + \dots + a^{-1} x \big)\) (Since \(a \neq 0\), \(a^{-1} \in \mathbb{F}\)).
Using associativity and distributivity: \(a \big( (a^{-1}) x + \dots + (a^{-1}) x \big) = a \cdot \big( n \cdot (a^{-1} x) \big) = (n \cdot a) \cdot (a^{-1} x) = 0\).
-
-
Let \(V = \mathbb{R}_{>0}\) and \(\mathbb{F} = \mathbb{Q}\). Prove that \(V\) is a vector space over \(\mathbb{F}\) with the operations: \(a \oplus b = ab, \quad \frac{n}{m} \odot a = a^{n/m} = \sqrt[m]{a^n}\).
- Commutativity: \(a \oplus b = ab = ba = b \oplus a \ \checkmark\) (The product in \(\mathbb{R}_{>0}\) commutes.)
-
Associativity:
-
\((a \oplus b) \oplus c = (ab) \cdot c = a \cdot (bc) = a \oplus (b \oplus c) \ \checkmark\) (The product is associative in \(\mathbb{R}_{>0}\).)
-
\(\frac{n}{m} \odot \left(\frac{p}{q} \odot a\right) ?= \left(\frac{n}{m} \cdot \frac{p}{q}\right) \odot a\). Let's check:\(\left(\frac{n}{m}\cdot\frac{p}{q}\right)\odot a=\frac{np}{mq}\odot a=a^{\frac{np}{mq}}=\left(a^{\frac{p}{q}}\right)^{\frac{m}{n}}=\left(\frac{p}{q}\odot a\right)^{\frac{n}{m}}=\frac{n}{m}\odot\left(\frac{p}{q}\odot a\right)\)
- Additive Identity: We need \(\tilde{0} \in V\) such that \(a \oplus \tilde{0} = a \ \forall a \in V\). In this case, we have \(a \oplus 1 = a \cdot 1 = a \ \forall a \in V\)\(\implies 1\) is the additive identity.
- Multiplicative Identity: Since \(1\) is the multiplicative identity in \(\mathbb{R}_{>0}\), we have to check that \(\frac{1}{1} \odot a = a^{1/1} = a \ \forall a \in V\). This is true since \(1 \odot a = a^{1/1} = a \ \checkmark\).
- Additive Inverses: For all \(a \in V\), there exists \(-a \in V\) such that \(a \oplus (-a) = 1\) (where \(1\) is the additive identity in \(V\)). Since \(a \in V = \mathbb{R}_{>0}\), there exists \(\frac{1}{a} \in V\) and we have that \(a \oplus \frac{1}{a} = a \cdot \frac{1}{a} = 1\).
- Distributivity: \(\frac{n}{m} \odot (a \oplus b) = \frac{n}{m} \odot (ab) = (ab)^{n/m} = a^{n/m} \cdot b^{n/m} = \frac{n}{m} \odot a \oplus \frac{n}{m} \odot b\). Hence, distributivity holds.
- Scalar Addition and Multiplication: \(\left(\frac{n}{m} + \frac{p}{q}\right) \odot a = \left(\frac{nq + pm}{mq}\right) \odot a = a^{\frac{nq + pm}{mq}}\)\(=a^{\frac{n}{m}+\frac{p}{q}}=\left(a^{\frac{n}{m}}\right)\cdot\left(a^{\frac{p}{q}}\right)=\left(\frac{n}{m}\odot a\right)\cdot\left(\frac{p}{q}\odot a\right)=\left(\frac{n}{m}\odot a\right)\oplus\left(\frac{p}{q}\odot a\right)\).
Therefore, \(V\) is a vector space over \(\mathbb{F}\).
-
-
Suppose \(U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}\). Find a subspace \(W\) of \(\mathbb{F}^4\) such that \(\mathbb{F}^4 = U \oplus W\).
We need to be able to write any \((x, y, z, w) \in \mathbb{F}^4\) as \(u + w\) for \(u \in U\) and \(w \in W\).
Therefore, we consider \(W = \{(0, x, y, 0) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}\).
Let's see that \(\mathbb{F}^4 = U \oplus W\):
- \(\mathbb{F}^4 = U + W\): We have that \((x, y, z, w) = (x, x, z, w) + (0, y - x, z - w, 0)\) where \((x, x, z, w) \in U\) and \((0, y - x, z - w, 0) \in W\).
So every \(v \in \mathbb{F}^4\) can be written as \(u + w\) with \(u \in U\) and \(w \in W\). -
\(U \cap W = \{0\}\): Let \((x, y, z, w) \in U \cap W\).
This tells us Since \((x, y, z, w) \in U \implies x = y\) and \(z = w\).
Since \((x, y, z, w) \in W \implies x = 0\) and \(w = 0\).
Therefore \(x = y = z = w = 0\). So \(U \cap W = \{0\}\).
- \(\mathbb{F}^4 = U + W\): We have that \((x, y, z, w) = (x, x, z, w) + (0, y - x, z - w, 0)\) where \((x, x, z, w) \in U\) and \((0, y - x, z - w, 0) \in W\).
-
Find the values of \(k\) for which the system \(\begin{cases}2kx_1+4x_2+2kx_3=2\\ kx_1+(k+4)x_2+3x_3=-2\\ -kx_1-2x_2+x_3=1\\ (k+2)x_2+(3k+1)x_3=-1\end{cases}\)
Write in matrix and row reduced it, we have\(\begin{pmatrix}\begin{array}{ccc|c}0 & 0 & 2k+2 & 4\\ 0 & k+2 & 4 & -1\\ k & 2 & -1 & -1\\ 0 & 0 & 3k-3 & 0\end{array}\end{pmatrix}\)
Then \(k=1\) if it has solution. Then $\begin{pmatrix}\begin{array}{ccc|c} 0 & 0 & 4 & 4 \ 0 & 3 & 4 & -1 \ 1 & 2 & -1 & -1 \ 0 & 0 & 0 & 0 \end{array}\end{pmatrix} $ where the solution must be unique
The solutions is \(\begin{cases}x_1=\frac{10}{3}\\ x_2=-\frac53\\ x_3=1\end{cases}\)
-
No solution.
\(k \neq 1\) 2. An infinite amount of solutions.
No way! 3. A unique solution.
Yes
-
-
Suppose \(\{v_1, \ldots, v_n\}\) is L.I. in \(V\) and \(w \in V\). Prove that \(\dim(\langle v_1 + w, \ldots, v_n + w \rangle) \geq n - 1\).
We need to find \(n - 1\) L.I. vectors \(\{w_1, \ldots, w_{n-1}\}\) contained in \(\langle v_1 + w, \ldots, v_n + w \rangle\).
\(\implies \langle w_1, \ldots, w_{n-1} \rangle \subseteq \langle v_1 + w, \ldots, v_n + w \rangle\)
\(\implies n - 1 \leq \dim(\langle w_1, \ldots, w_{n-1} \rangle) \leq \dim(\langle v_1 + w, \ldots, v_n + w \rangle)\)
Note that \(v_2 - v_1 = (v_2 + w) - (v_1 + w) \in \langle v_1 + w, \ldots, v_n + w \rangle\).
In the same way, for all \(i \in \{2, \ldots, n\}\), we have that \(v_i - v_1 = (v_i + w) - (v_1 + w) \in \langle v_1 + w, \ldots, v_n + w \rangle\).
So \(\{v_2 - v_1, v_3 - v_1, \ldots, v_n - v_1\}\) (\(n - 1\) vectors) \(\subseteq \langle v_1 + w, \ldots, v_n + w \rangle\).
Are they L.I.?
Suppose \(a_1(v_2 - v_1) + a_2(v_3 - v_1) + \ldots + a_{n-1}(v_n - v_1) = 0\).
We want to show that \(a_1 = a_2 = \ldots = a_{n-1} = 0\).
We have that \((-a_1 - a_2 - \ldots - a_{n-1})v_1 + a_1v_2 + a_2v_3 + \ldots + a_{n-1}v_n = 0\).
And since \(\{v_1, \ldots, v_n\}\) is L.I., it follows that \(-a_1 - a_2 - \ldots - a_{n-1} = 0\), \(a_1 = 0\), \(a_2 = 0\), \(\ldots\), \(a_{n-1} = 0\).
Therefore, \(\dim(\langle v_1 + w, \ldots, v_n + w \rangle) \geq \dim(\langle v_2 - v_1, \ldots, v_n - v_1 \rangle) = n - 1\).
-
Consider the real vector space \(M_2(\mathbb{R})\). Let \(W_1=\left\{\begin{pmatrix}x & -x\\ y & z\end{pmatrix}\in M_2(\mathbb{R})\right\},W_2=\left\{\begin{pmatrix}x & y\\ -x & z\end{pmatrix}\in M_2(\mathbb{R})\right\}.\)
-
Show that \(W_1\) and \(W_2\) are subspaces of \(M_2(\mathbb{R})\).
We just need to check that \(A + \alpha B \in W_i\) for every \(A, B \in W_i\) and \(\alpha \in \mathbb{R}\).
- \(W_1\): \(\begin{pmatrix} x & -x \\ y & z \end{pmatrix} + \alpha \begin{pmatrix} a & -a \\ b & c \end{pmatrix} = \begin{pmatrix} x + \alpha a & -(x + \alpha a) \\ y + \alpha b & z + \alpha c \end{pmatrix} \in W_1\)\(\implies W_1\) is a subspace.
-
\(W_2\): Exercise (it’s the same as \(W_1\)).
- Find the dimension of \(W_1, W_2, W_1 + W_2\), and \(W_1 \cap W_2\). Give an explicit basis for each of these spaces.
-
\(W_1\): \(W_1=\left\{\begin{pmatrix}x & -x\\ y & z\end{pmatrix}\in M_2(\mathbb{R})\right\}=\left\lbrace x\begin{pmatrix}1 & -1\\ 0 & 0\end{pmatrix}+y\begin{pmatrix}0 & 0\\ 1 & 0\end{pmatrix}+z\begin{pmatrix}0 & 0\\ 0 & 1\end{pmatrix},\,x,y,z\in\mathbb{R}\right\rbrace=\langle\begin{pmatrix}1 & -1\\ 0 & 0\end{pmatrix},\begin{pmatrix}0 & 0\\ 1 & 0\end{pmatrix},\begin{pmatrix}0 & 0\\ 0 & 1\end{pmatrix}\rangle\)
Since these matrices are L.I., a basis for \(W_1\) is \(\left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}\) and \(\dim(W_1) = 3\).
\(W_2\): In the same way as for \(W_1\), we have that \(\left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}\) is a basis for \(W_2\) and \(\dim(W_2) = 3\).
\(W_1 + W_2\): Note that \(W_1 \subseteq W_1 + W_2 \subseteq M_2(\mathbb{R})\)\(\implies \dim(W_1) \leq \dim(W_1 + W_2) \leq \dim(M_2(\mathbb{R}))\). \(\implies 3 \leq \dim(W_1 + W_2) \leq 4\).
But note that \(\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \in W_2 \implies \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \in W_1 + W_2\) but \(\begin{pmatrix}1 & 0\\ -1 & 0\end{pmatrix}\notin W_1\implies\dim(W_1+W_2)\neq3\). (\(W_1 \subsetneq W_1+W_2\))
\(\implies \dim(W_1 + W_2) = 4\) and therefore \(W_1 + W_2 = M_2(\mathbb{R})\).
So a basis for \(W_1 + W_2\) is \(\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}\). 2. \(W_1 \cap W_2\): We have that \(\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)\) \(\implies \dim(W_1 \cap W_2) = 3 + 3 - 4 = 2\).
Find a basis for \(W_1 \cap W_2\) (let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in W_1 \cap W_2\)).
-