12.17 Further properties of det
Claim
\(\det (AB)=\det A\cdot \det B\)
Proposition
If \(A\) is invertible, then \(\det A^{-1}=\left(\det A\right)^{-1}\)
Proof
\(1=\det(A\cdot A^{-1})=\left(\det A)\cdot\det\left(A^{-1}\right)\Rightarrow\left(\det A\right.\right)^{-1}=\det A^{-1}\)
True or False
-
\(\det A=1\) iff \(A=I\)
False, counterexample: \(\det\begin{pmatrix}-1 & 0\\ 0 & -1\end{pmatrix}=1\)
-
\(\det A^{k}=0\Rightarrow\det A=0\)
True, since \(\det A^{k}=0\Rightarrow\left(\det A\right)^{k}=0\Rightarrow\det A=0\)
-
\(A\in M_{n\times n}\left(\mathbb{C}\right)\) with \(A^3=I\Rightarrow\left|\det A\right|=1\)
True, since \(A^3=I\), then \(\det A^3=I\Rightarrow\left(\det A\right)^3=1\). In particular, \(|\det A|^3=1\). Then \(|\det A|=1\)
Corollary
Similar matrices have equal determinant.
Proof
By definition \(B=P^{-1}AP\), then \(\det B=\det(P^{-1}AP)=\det(P^{-1})\det(A)\det(P)=\det A\)
(We can commute this two because we are in the field, but we cannot do that inside \(\det\))
True or False
-
\(\begin{pmatrix}1 & 1\\ 1 & -1\end{pmatrix}\) is similar to \(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}\) or \(\begin{pmatrix}0 & 1\\ -1 & 0\end{pmatrix}\)
False
\(\det B-2\) \(\det =-1\) \(\det =1\)
-
\(\begin{pmatrix}1 & 1\\ 1 & -1\end{pmatrix}\) is similar to \(\begin{pmatrix}2 & 0\\ 0 & -1\end{pmatrix}\)
False
Although the determinant is equal but the trace is not equal, recall this, then they are not similar
-
If \(A\) and \(B\) have the same \(\det\) and the same \(\text{tr}\), then they are similar
False
Easy to know the similarity class of \(\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}\) is itself. (\(I=P^{-1}\cdot I\cdot P=P^{-1}\cdot P=I\) )
Then\(\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}\cancel{\sim}\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}\)
-
\(I\) is the only matrix whose similarity class has one element
False
\(I,-I,0,\lambda I\)
Hint: \(P^{-1}AP=A\;\iff\;AP=PA,\forall\text{ invertible P}\)
The det of an operator
Given \(T\in \text{End}(V)\), let \(\det T=\det[T]_{\mathcal{B}}\), for some basis \(\mathcal{B}\) of \(V\)
We need to check well definition (check if we choose different basis, we always get the same result)
\(\det[T]_{\mathcal{B}}=\det[T]_{\mathcal{B}^{\prime}}\) since \([T]_{\mathcal{B}}\) is similar to \([T]_{\mathcal{B}^{\prime}}\) since \([T]_{\mathcal{B}^{\prime}}=P^{-1}[T]_{\mathcal{B}}P\)
\(\det A=\det A^{T}\)
Laplace row expansion
Given a row \(i\), it holds: \(\det A=\sum_{j=1}^{n}\left(-1\right)^{i+j}a_{ij}\det A\left(i\left|j\right.\right)\), where \(A(i|j)\) is the \((n-1)\times(m-1)\) matrix obtained from \(A\) by deleting it's i-th row and it's j-th column.
Example
-
\(\det\begin{pmatrix}1 & 0 & -1\\ 2 & 2 & 1\\ -1 & 1 & 2\end{pmatrix}=?\)
\(\text{row}~i=1:\left(-1\right)^2\times1\times\begin{vmatrix}2 & 1\\ 1 & 2\end{vmatrix}+\left(-1\right)^2\times0\times\begin{vmatrix}we\left(2\right) & do\left(1\right)\\ not\left(-1\right) & care\left(2\right)\end{vmatrix}+\left(-1\right)^4\times\left(-1\right)\times\begin{vmatrix}2 & 2\\ -1 & 1\end{vmatrix}=3-4=-1\)
Choose the row which has the most \(0\) that can simplify the calculation
If we choose \(\text{row }i=2:\left(-1\right)\times2\times\det\begin{vmatrix}0 & -1\\ 1 & 2\end{vmatrix}+\left(-1\right)^4\times2\times\begin{vmatrix}1 & -1\\ -1 & 2\end{vmatrix}+\left(-1\right)^5\times1\times\begin{vmatrix}1 & 0\\ -1 & 1\end{vmatrix}=-2+2-1=-1\)
If we choose \(\text{row }i=3:\left(-1\right)^4\times\left(-1\right)\times\det\begin{vmatrix}0 & -1\\ 2 & 1\end{vmatrix}+\left(-1\right)^5\times1\times\begin{vmatrix}1 & -1\\ 2 & 1\end{vmatrix}+\left(-1\right)^6\times2\times\begin{vmatrix}1 & 0\\ 2 & 2\end{vmatrix}=-2-3+4=-1\)
-
\(\begin{vmatrix}i & i & 0 & 0\\ 1 & 0 & -1 & 0\\ 0 & 0 & i & i\\ 1 & 0 & 1 & 0\end{vmatrix}=i\times\begin{vmatrix}0 & -1 & 0\\ 0 & i & i\\ 0 & 1 & 0\end{vmatrix}+\left(-i\right)\times\begin{vmatrix}1 & -1 & 0\\ 0 & i & i\\ 1 & 1 & 0\end{vmatrix}=0+\left(-i\right)\times\left(-i-i\right)=-2\)
Choose \(\text{row }1\)
\(\begin{vmatrix}i & i & 0 & 0\\ 1 & 0 & -1 & 0\\ 0 & 0 & i & i\\ 1 & 0 & 1 & 0\end{vmatrix}=\left(-i\right)\times\begin{vmatrix}1 & -1 & 0\\ 0 & i & i\\ 1 & 1 & 0\end{vmatrix}=\left(-i\right)\times\left(-i-i\right)=-2\)
Choose \(\text{column }2\)
Hint \(\begin{pmatrix}a & b & c\\ d & e & f\\ g & h & i\end{pmatrix}=\left(aei-ceg\right)-afh-bdi+bfg+cdh\)
We need to add two mirror triangular
Remark
Since \(\det A=\det A^t\), we mat expand \(\det A\) by a column.
Also, if there is a zero column, \(\det\) also equal to zero since same reason
Cofactors and the adjoint
Let \(c_{ij}=\left(-1\right)^{i+j}\det A\left(i\left|j\right.\right)\) be called the \((i,j)-\)cofactor of \(A\). The matrix \(C\) with \(C_{ij}=c_{ij}\) is the cofactors matrix associated to \(A\)
We know that \(\det A=\sum_{j=1}^{n}a_{ij}c_{ij}\)(i-th row expansion) and also \(\det A=\sum_{i=1}^{n}a_{ij}c_{ij}\)(j-th column expansion)
Now, let \(B\) be obtained form \(A\) by replacing it's j-th column by it's k-th column (\(k\neq j\))
[\(B\) has two identical columns: j-th and k-th].
Then \(\det B=0=\sum_{i=1}^{n}b_{ij}\left(-1\right)^{i+j}\det B\left(i\left|j\right.\right)=\sum_{i=1}^{n}a_{ik}\left(-1\right)^{i+j}\det A\left(i\left|j\right.\right),k\neq j\)
Now, \(\sum_{i=1}^{n}a_{ik}\left(-1\right)^{i+j}\det A\left(i\left|j\right.\right)=\begin{cases}{}0,\text{ if }k\neq j\\ \det A,\text{ if }k=j\end{cases}=\delta_{kj}\det A\) where \(c_{ij}= \left(-1\right)^{i+j}\det A\left(i\left|j\right.\right)\)
Let \(\text{adj}A=C^t\), \((\text{adj}A)_{ji}=c_{ji}\). Hence \(\sum_{i=1}^{n}\left(\text{adj}_{ji}\right)a_{ik}=\delta_{kj}\det A\) and on the other hand, \(\sum_{i=1}^{n}\left(\text{adj}_{ji}\right)a_{ik}=\left(\left(\text{adj}A\right)\cdot A\right)_{jk}\)
Therefore, \(\left(\left.\text{adj}A\right)\cdot A\right.=\begin{pmatrix}\det A & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \det A\end{pmatrix}=\det A\cdot I\)
Conclusion: If \(\det A\neq0\left(\;\iff\;A\text{ is invertible }\right)\), then \(A^{-1}=\frac{1}{\det A}\cdot\text{adj}A\)
Example
-
\(A = \begin{pmatrix}1 & 0 & 1 \\0 & 1 & 0 \\-1 & 1 & 1\end{pmatrix}\)\(\text{adj} A = \begin{pmatrix}+1 & -(-1) & +(-1) \\-0 & +2 & -0 \\+1 & -1 & +1\end{pmatrix}=\begin{pmatrix}1 & 1 & -1 \\0 & 2 & 0 \\1 & -1 & 1\end{pmatrix}\)
\(\begin{pmatrix}1 & 0 & 1\\ 0 & 1 & 0\\ -1 & 1 & 1\end{pmatrix}\begin{pmatrix}1 & 1 & -1\\ 0 & 2 & 0\\ 1 & -1 & 1\end{pmatrix}=\begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{pmatrix}=\det A\cdot I\Rightarrow A^{-1} =\begin{pmatrix}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\0 & 1 & 0 \\\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\end{pmatrix}\)