11.26 Isomorphisms
Representing linear maps by matrices
\(V\) with basis \(\mathcal{B}: v_1, \dots, v_n\), \(W\) with basis \(\mathcal{B}': w_1, \dots, w_m\).
For each \(T: V \to W\) linear map \(\mapsto [T]_{\mathcal{B} \mathcal{B}'} \in M_{m \times n}(\mathbb{F})\).
Recall that we have (coordinate):
\([~~]_{\mathcal{B}}:V \to\mathbb{F}^{n},\quad v\mapsto\left\lbrack v\right\rbrack_{\mathcal{B}}\text{ ,if }v=a_1v_1+\dots+a_{n}v_{n}\implies[v]_{\mathcal{B}}=(a_1,\dots,a_{n}),\\ \psi_{\mathcal{B}}:\mathbb{F}^{n} \to V,\quad(a_1,\dots,a_{n})\mapsto v=a_1v_1+\dots+a_{n}v_{n}\)
Remark
They are inverses of each other.
Proposition
\([T \cdot v]_{\mathcal{B}'} = [T]_{\mathcal{B}\mathcal{B}'} [v]_{\mathcal{B}}\)
\(([~~]_{\mathcal{B}^{\prime}}\circ T)(v)=(T_{A}\circ[~~]_{\mathcal{B}})(v)\)
Diagram:
\("/// "\) means the diagram commutes.
Application
\(A=[T]_{\mathcal{BB}^{\prime}}\)
\(v \in \text{Null } T \iff A \cdot [v]_{\mathcal{B}} = 0\)
\(w \in \text{Range } T \iff A \cdot X = [w]_{\mathcal{B}'}\), for some \(X \in \mathbb{F}^m\)
Remark
-
Given \(T\), we get \(T_A: \mathbb{F}^n \to \mathbb{F}^m\), where \(A = [T]_{\mathcal{B}\mathcal{B}'}\).
-
Conversely: Given \(T_A\) (any \(A\)): \(\mathbb{F}^n \to \mathbb{F}^m\), we get a \(T: V \to W\) by \(T(v)=\psi_{\mathcal{B}^{\prime}}\left(T_{A}\cdot[v]_{\mathcal{B}}\right)\)\([T = \psi_{\mathcal{B}'} \circ T_A \circ [~~]_{\mathcal{B}}]\)
Recall
\(\mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F}) \to \mathcal{L}(V, W)\)
\(M_{m \times n}(\mathbb{F}) \to \mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})\) Both are the identities.
Proposition
Let \(V \xrightarrow{T} W \xrightarrow{S} Z(V \xrightarrow{ST} Z)\), and \(\mathcal{B}, \mathcal{B}'\), and \(\mathcal{B}''\) be bases of \(V, W\), and \(Z\), respectively.
Then \([ST]_{\mathcal{B}\mathcal{B}''} = [S]_{\mathcal{B}'\mathcal{B}''} \cdot [T]_{\mathcal{B}\mathcal{B}'}\) (\([ST]_{\mathcal{BB}''}\) is \(C\), \([S]_{\mathcal{B'B}''}\) is \(A\), \([T]_{\mathcal{BB}'}\) is \(B\),)
Proof.
Assume \(\mathcal{B}: v_1, \dots, v_n\), \(\mathcal{B}'': z_1, \dots, z_k\), \(\mathcal{B}': w_1, \dots, w_m\).
Consider \(([ST]_{\mathcal{BB}''})_{ij}:\) \(S(T(v_{j}))=S\left(\sum_{l=1}^{m}b_{lj}w_{l}\right)=\sum_{l=1}^{m}b_{lj}S(w_{l})=\sum_{l=1}^{m}b_{lj}\cdot\sum_{r=1}^{k}a_{rl}\cdot z_{r}=\sum_{r=1}^{k}\left(\sum_{l=1}^{m}b_{lj}a_{rl}\right)z_{r}\)
Hence, \(([ST]_{\mathcal{BB}''})_{ij}=\sum_{l=1}^{m}b_{lj}a_{il}=\sum_{l=1}^{m}a_{il}b_{lj}=(AB)_{ij}\)\(\implies C_{ij} = (AB)_{ij} \implies C = AB.\)
Isomorphisms
Definition
A linear map \(T \in \mathcal{L}(V, W)\) is invertible if there is an \(S \in \mathcal{L}(W, V)\) such that \(ST = \text{Id}_V\) and \(TS = \text{Id}_W\). \(S\) is an inverse of \(T\).
Remark
-
If \(T\) is invertible, there is only one inverse, called \(T^{-1}\).
-
If \(T\) is invertible, \(T\) is injective and surjective.
Proposition
\(T \in \mathcal{L}(V, W)\) is invertible if and only if \(T\) is injective and surjective.
Proof
\(\Rightarrow\)) Since \(T\) is invertible, then there exists \(T^{-1}\) such that \(T^{-1}T = \text{Id}_V\) and \(TT^{-1} = \text{Id}_W\)
-
Injective
Consider \(T(v_1)=T(v_2)\), then \(T^{-1}T(v_1)=T^{-1}T(v_2)\Rightarrow v_1=v_2\)
-
Surjective
We need to prove \(\forall w\in W,\exists v\in V:T(v)=w\), thus consider \(v=T^{-1}(w)\), then it is valid...
\(\Leftarrow\)) We need to prove \(\exists S\) such that \(ST = \text{Id}_V\) and \(TS = \text{Id}_W\).
Since \(T\) is bijective, then for any \(w\in W\) there exists a unique \(v\in V\) such that \(T(v)=w\)
Thus we define \(S(w)=v\left(v\text{ is unique}\right)\)
-
\(TS = \text{Id}_W\)
\(TS(w)=T(S(w))=T(v)=w\)
-
\(ST = \text{Id}_V\)
\(ST(v)=S(T(v))=S(w)=v\)
-
Linear
easy
Corollary
\(T \in \text{End}(V)\) is invertible if and only if \(T\) is injective if and only if \(T\) is surjective.
Definition
An invertible map \(T: V \to W\) is an isomorphism from \(V\) to \(W\). In this case, \(V\) and \(W\) are isomorphic. We write \(V\simeq W\).
Examples
-
\(\mathbb{C}_3\left\lbrack x\right\rbrack\simeq\mathbb{C}^4\)
Define \(T:\mathbb{C}^4\to\mathbb{C}_3\left\lbrack x\right\rbrack\) by \((a, b, c, d) \mapsto a + bx + cx^2 + dx^3\).
\(T\) is linear.
Moreover: \(\text{Null } T = \{0\} \implies T\) is injective. \(\text{Range }T=\mathbb{C}_3\left\lbrack x\right\rbrack\implies T\) is surjective.
-
\(M_{2\times3}(\mathbb{Q})\simeq\mathbb{Q}^6\)
\(T: M_{2 \times 3}(\mathbb{Q}) \to \mathbb{Q}^6\) by \(\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \mapsto (a, b, c, d, e, f)\).
\(T\) is linear and both injective and surjective.
\(S: M_{2 \times 3}(\mathbb{Q}) \to \mathbb{Q}^6\) by \(\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \mapsto (a, d, b, e, c, f)\).
\(S\) is linear and both injective and surjective.
Example
\(\mathcal{L}(V, W) \simeq M_{m \times n}(\mathbb{F}) \quad (\dim V = n, \dim W = m)\). since
Notice that, for fixed bases \(\mathcal{B}\) and \(\mathcal{B}'\) of \(V\) and \(W\), respectively. We have a particular isomorphism. In general, all are different.
Remark
Being isomorphic is an equivalence relation.
-
\(V \simeq V\) (Id).
-
If \(V\simeq W\implies W\simeq V\) (\(T^{-1}\)).
-
If \(V\simeq W\) and \(W\simeq U\implies V\simeq U\) (\(ST\)).
Theorem (Classification Theorem)
Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.
Proof
\(\Rightarrow\)) Let \(T:V\rightarrow W\) an isomorphism, \(T\) is injective and surjective, then by theorem
\(\dim V = \dim(\text{Null } T) + \dim(\text{Range } T) = 0 + \dim W\).
\(\Leftarrow\)) Let \(v_1, \dots, v_n\) be a basis of \(V\) and let \(w_1, \dots, w_n\) be a basis of \(W\). Let \(T\) be defined (Fundamental Theorem of Linear Maps) as \(T(v_i) = w_i\).
Claim: \(T\) is an isomorphism. To prove inj and sur, we need this.
-
\(\text{Range } T \supseteq \{w_1, \dots, w_n\} \implies \text{Range } T \supseteq \langle w_1, \dots, w_n \rangle = W\) (since \(w_1, \dots, w_n\) is a basis).
Then \(\text{Range}T=W\) since \(W\subseteq \text{Range}T\) initially.
-
\(v \in \text{Null } T \implies 0 = T(a_1 v_1 + \dots + a_n v_n) = a_1 T(v_1) + \dots + a_n T(v_n)\) \(= a_1 w_1 + \dots + a_n w_n \implies a_1 = \dots = a_n = 0 \implies v = 0\).
\(\therefore T\) is injective and surjective. Thus, \(T\) is an isomorphism.
Remark
Every \(n\)-dimensional vector space \(V\) over \(\mathbb{F}\) is isomorphic to \(\mathbb{F}^n\).
-
Since \(\mathbb{F}^n \not\simeq \mathbb{F}^m\) if \(n \neq m\), so that every finite-dimensional (non-zero) \(\mathbb{F}\)-vector space is isomorphic to a unique \(\mathbb{F}^n\), namely \(\mathbb{F}^{\dim V}\).
-
\(\dim \mathcal{L}(V, W) = \dim M_{m \times n}(\mathbb{F}) = \dim \mathbb{F}^{m \cdot n} = m \cdot n\).
Given bases \(v_1, \dots, v_n\) and \(w_1, \dots, w_m\) of \(V\) and \(W\), respectively, the list \(T_{ij}\) for \(i = 1, \dots, n\), \(j = 1, \dots, m\), defined by \(T_{ij}:\begin{cases}v_{i}\mapsto w_{j}\\ v_{l}\mapsto0,l\neq i{}\end{cases}\) is a basis of \(\mathcal{L}(V, W)\).
For example \(\dim\mathcal{L}(R^2,R^2)=\dim M_{2\times2}\left(R\right)=\dim R^4=4\).
The basis of \(R^2\) is \((1,0),(0,1)\) and \((1,1),(-1,1)\)
Then the basis of \(\mathcal{L}(R^2,R^2)\) is \(\left\lbrace T_{11}:\left(1,0\right)\mapsto\left(1,1\right),T_{12}:\left(1,0\right)\mapsto\left(-1,1\right),T_{21}:\left(0,1\right)\mapsto\left(1,1\right),T_{22}:\left(0,1\right)\mapsto\left(-1,1\right)\right\rbrace\)
\(T(x,y)=(x−y,x+y)\) can be expressed as?
\(T(x,y)=aT_{11}+bT_{12}+cT_{21}+dT_{22}\)
\(T(v_1) = T(1, 0) = (1 - 0, 1 + 0) = (1, 1)\)\(T(v_2) = T(0, 1) = (0 - 1, 0 + 1) = (-1, 1)\)
For \(T(v_1)\):
\(T(v_1) = aT_{11}(v_1) + bT_{12}(v_1) + cT_{21}(v_1) + dT_{22}(v_1)\)\(= a\mathbf{w_1} + b\mathbf{w_2} + c \cdot 0 + d \cdot 0\)\(= a(1, 1) + b(-1, 1) = (a - b, a + b)\)For \(T(v_2)\):
\(T(v_2) = aT_{11}(v_2) + bT_{12}(v_2) + cT_{21}(v_2) + dT_{22}(v_2)\)\(= a \cdot 0 + b \cdot 0 + c\mathbf{w_1} + d\mathbf{w_2}\)\(= c(1, 1) + d(-1, 1) = (c - d, c + d)\)
\(\begin{cases}a-b=1\\ a+b=1\\ c-d=-1\\ c+d=1\end{cases}\)
\(T = 1 \cdot T_{11} + 0 \cdot T_{12} + 0 \cdot T_{21} + 1 \cdot T_{22} = T_{11} + T_{22}\)
-
Isomorphisms carry basis to basis: If \(T: V \to W\) is an isomorphism and \(v_1, \dots, v_n\) is a basis of \(V\), then \(Tv_1, \dots, Tv_n\) is a basis of \(W\).