10.28 Subspaces
Subspaces
Subspaces
Definition
Let \(V\) be an \(\mathbb{F}\)-vector space, a subspace \(W\) of \(V\) is a subset of \(V\) (\(W\subseteq V\)) such that with the restrictions of the sum and the multiplication by scalars, it is an \(\mathbb{F}\)-vector space.
Remark
It is implicitly assumed that: \(+|_{W\times W}: W\times W\rightarrow W\) and \(\cdot|_{\mathbb{F}\times W}:\mathbb{F}\times W\rightarrow W\)
If \(\tilde 0\) is a neutral element of \(W\), thus \(\tilde 0=0\)
For any \(w\in W,\exists \tilde w\) such that \(w+\tilde w=0,\tilde w=-w\)
Proposition
A non-empty subset \(W\) of \(V\) is a subspace of \(V\) iff
- \(\forall v,w\in W,v+w\in W\)
- \(\forall \lambda \in\mathbb{F},\forall v\in W,\lambda\cdot v\in W\)
Proof
\(\Rightarrow\)) Direct from the definition
\(\Leftarrow\)) Let's prove that \((W,+,\cdot )\) is a \(\mathbb{F}\)-vector space
-
\(+\) is associative and commutative by particularization (in large space yes,you can also in small space)
-
\(\cdot\) is distributive both by particularization 在v里可以 w自然可以
-
\(\cdot\) is associative by particularization
-
\(\exists\) of neutral element: let \(w\in W\), then \(0=0\cdot w\in W\) and it is a neutral element for \(W\) by particularization
-
Given \(w\in W,\exists\) on opposite \(-w=(-1)\cdot w\in W\) and it is an opposite of \(w\in W\) by particularization
Examples
-
\(W=\{0\},W=V\) are the trivial subspaces of \(V\)
-
\(V=\R^3\), \(W_1=\{(x,y,0):x,y\in\mathbb{R}\}\subsetneq V\)
\((x,y,0)+(a,b,0)=(x+a,y+b,0)\in W_1\)
\(l(x,y,0)=(lx,ly,0)\in W_1\)
After check the proposition above, Yes
\(W_2=\{(x,y,y):x,y\in\mathbb{R}\}\) Yes
\(W_3=\{(x,2x,\sqrt2x):x\in\R\}\) Yes
\(W_4=\{(x,x+z,z):x,z\in\R\}\) Yes
-
\(V=\R^3\) \(W_1=\{(x,y,1):x,y\in \R\}\) No!
\(W_2=\{(x,\sqrt{\left|x\right|},0):x\in\mathbb{R}\}\) No!
Question
-
Which are all the subspaces of \(V=\R^2\)
- if \(v\neq 0,v\in W\Rightarrow \lambda\cdot v\in W\)
Moreover \(W=\{\lambda v:\lambda\in\R\}\) is a subspace * If \(W\) contains 2-non-colinear vectors \(v\) and \(w\), hence a goof 2-list
So, any \(\forall z\in\R\), \(z=\lambda\cdot v+\mu\cdot w\in W\)
Conclusion: \(W\) is a non-trivial subspaces of \(\R^2\) iff \(W\) is a line through 0
-
Which are all the subspaces of \(V=\R^3\)
- The zero subspace \(\{0\}\),
- All lines through the origin,
- All planes through the origin,
- The full space \(\mathbb{R}^3\).
Sum of subspaces
Definition
Given subspaces \(W_1,W_2,W_3,...,W_{k}\) of \(V_1\)
The sum of them is the subspace \(W_1+...+W_{k}=\{w_1+\cdots+w_{k}:w_{i}\in W_{i}\}\)
Remark
\(W_1+...+W_{k}\) is in fact a subspace of \(V\)
-
\((w_1+w_2+...+w_{k})+(\widetilde{w}_1+\widetilde{w}_2+...+\widetilde{w}_{k})=(w_1+\widetilde{w_1})+...+(w_{k}+\widetilde{w_{k}})\in W_1+...+W_{k}\)
-
\(\lambda(w_1+w_2+...+w_{k})=\lambda w_1+...+\lambda w_{k}\in W_1+...+W_{k}\)
Example
\(V=\R^3,W_1=\{(x,0,0):x\in\R\},W_2=\{(0,y,0):y\in\R\}\Rightarrow W_1+W_2=\{(x,y,0):x,y\in\R\}\)
\(V=\mathbb{C}^3,W_1=\{(x,y,x+y):x,y\in\mathbb{C}\},W_2=\{(x,x+z,z):x,z\in\mathbb{C}\}\Rightarrow W_1+W_2=\mathbb{C}^3\)
Since \((1,0,1)\in W_1\) \((0,1,1)\in W_1\) \((1,1,0)\in W_2\) \((0,1,1)\in W_2\)
\(W_1\cap W_2=?~~~~~~~\) \((x,y,x+y)=(a,a+b,b)\Leftrightarrow x=a,y=a+b,x+y=b\Rightarrow x=0,y=b\) \(W_1\cap W_2=(0,y,y)~\)
Proposition
The intersection of two subspaces of \(V\) is a subspace. Moreover, the intersection of an arbitrary family of subspaces is a subspace
Proof
Let \(W_1\) and \(W_2\) subspaces. Consider \(W_1\cap W_2\)
- \(v,w\in W_1\cap W_2\Rightarrow v+w\in W_1\) and \(v+w\in W_2\Rightarrow v+w\in W_1\cap W_2\)
- \(v\in W_1\cap W_2\Rightarrow \lambda \cdot v\in W_1\) and \(\lambda \cdot v\in W_2\Rightarrow \lambda\cdot v\in W_1\cap W_2\)
Now, given \(\{W_{i}\}_{i\in I}\) a family of subspaces, \(\bigcap_{i\in I}W_{i}\) is a subspace
- \(v,w\in\bigcap_{i\in I}W_{i}\Rightarrow v+w\in W_{i},\forall i\in I\) \(\Rightarrow v+w\in\bigcap_{i\in I}W_{i}\)
- \(v\in\bigcap_{i\in I}W_{i}\Rightarrow\lambda\cdot v\in W_{i},\forall i\in I\) \(\Rightarrow\lambda\cdot v\in\bigcap_{i\in I}W_{i}\)
Is \(W_1\cup W_2\) a subspace? No in general
Because \(W_1\cup W_2\) is just two lines, will not be a plane
Proposition
Given \(W_1,W_2,...,W_{k}\) subspaces of \(V\), the sum \(W_1+W_2+...+W_{k}\) is the smallest subspace of \(V\) containing \(W_1,W_2,...,W_{k}\)
Proof \(W_1+...+W_{k}\) contains \(W_1,W_2,...,W_{k}\) (just let other take \(0\in W_i\))
Let \(W\) be another subspace also containing \(W_1,W_2,...,W_{k}\)
Given \(w_1\in W_1,w_2\in W_2,...,w_{k}\in W_{k}\Rightarrow w_1+w_2+...+w_{k}\in W\). Hence \(W_1+W_2+...+W_{k}\subseteq W\)
Definition
Given a list of vectors \(v_1,v_2,...,v_k\) of \(V\), the subspace generated by them is the subspace \(W_1+W_2+...+W_{k}\) where \(W_i=\{\lambda\cdot v_i,\lambda\in\mathbb{F}\}\)
Notation: \(\langle v_1,v_2,...,v_k\rangle\)
Remark: \(\langle v_1,v_2,...,v_{k}\rangle=\{\text{all linear combinations of }v_1,v_2,...,v_{k}\}=\{\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_{k}v_{k}:\lambda_{i}\in\mathbb{F},i=1,\ldots,k\}\)
Example
\(V=\R^2\) \(W_1=\langle\left(1,1\right),\left(0,1\right)\rangle=\)
\((a,b)=a(1,1)+(b-a)(0,1)\)
\(W_2=\langle(1,-1),(1,1),(1,2)\rangle=\mathbb{R}^2\)