10.14 Fields
Fields
Definition and properties
Recall: \(\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}\) with \(+,\times\)
Definition of fields
A field \(\mathbb{F}\) is a set with at least \(2\) different elements \(0\) and \(1\), and \(2\) (binary) operations
We denote as \((\mathbb{F},+,\cdot)\)
-
\(+:F\times F\rightarrow F\) sum
-
\(\times :F\times F\rightarrow F\) product
such that satisfies all the following axioms
Properties of fields
-
Associativity: \(x+(y+z)=(x+y)+z\) \(/~~x\cdot(y\cdot z)=\left(x\cdot y\right)\cdot z,\forall x,y,z\in \mathbb{F}\)
-
Commutativity: \(x+y=y+x~~/~~x\cdot y=y\cdot x\)
-
Existence of neutral (additive identity) and multiplicative identity: \(\forall x\in\mathbb{F},\exists0\in\mathbb{F},1\in\mathbb{F},x+0=0+x~,~x\cdot1=1\cdot x,\)
-
Existence of opposites (additive inverse) and multiplicative inverses: \(\forall x\in F,\exists\tilde x\in F\) such that \(x+\tilde x=0=\tilde x+x\)
\(\forall x\in F,x\neq 0,\exists x^*\) such that \(x\cdot x^*=x^*\cdot x=1\)
-
Distributivity: \(x\cdot (y+z)=xy+xz,\forall x,y,z\in \mathbb{F}\)
Notation
\(x+y=+(x,y)/x\cdot y=x\times y=\times(x,y)\)
Examples
\(\mathbb{Q},\mathbb{R},\mathbb{C}\) are fields
\(\N,\Z\) are non-examples
-
\(\mathbb{F}=\left\lbrace0,1\right\rbrace\) is a field
\(+\) \(0\) \(1\) \(0\) \(0\) \(1\) \(1\) \(1\) \(0\) \(\times\) \(0\) \(1\) \(0\) \(0\) \(0\) \(1\) \(0\) \(1\) Notation: This is $\mathbb{F_2} $ or \(\Z_2\)(mod \(2\))
-
F={*,#} is a field
Assume identity element is * and neutral element is #
Then we have
\(x+\#=\#+x~,~x\cdot *=*\cdot x\)
Exists \(x+\tilde{x}=\#=\tilde{x}+x\) and \(x\cdot x^{*}=x^{*}\cdot x=*\)
\(+\) \(*\) # \(*\) # \(*\) # \(*\) # \(\times\) \(*\) # \(*\) \(*\) # # # #
-
\(\mathbb{Z}_3=\left\lbrace0,1,2\right\rbrace\) is a field (modular)
\(+\) \(0\) \(1\) \(2\) \(0\) 0 1 2 \(1\) 1 2 0 \(2\) 2 0 1 \(\times\) \(0\) \(1\) \(2\) \(0\) 0 0 0 \(1\) 0 1 2 \(2\) 0 2 1 It has the inverse even though it is a part of integers
-
\(\R\times \R\) with coordinatewise \(+\) and \(\times\) is not a field
$(a,b)+(a',b')=(a+a',b+b') $
$(a,b)\times(a',b')=(aa',bb') $
\((3,2)\times(\frac13,\frac12)=\left(1,1\right)\)
\((3,0)\times(?)=( ,\times)\)
No!
Arithmetic properties of fields
Remark
The 0 is the unique neutral element and 1 is the unique identity
\(0=0'+0=0'\)
\(1=1'\cdot 1=1'\)
-
The opposite of an \(x\) is unique
Assume \(x+\tilde x=0\) and \(x+\tilde{\tilde x}=0\)
So \(x+\tilde x=0=x+\tilde{\tilde x}\), then \(\tilde x+(x+\tilde x)=\tilde x+(x+\tilde{\tilde x})\)
Then \(0+\tilde x=0+\tilde{\tilde x}\), thus \(\tilde x=\tilde{\tilde x}\)
-
The inverse of a \(x\neq 0\) is unique
Assume \(x\cdot x^{**}=1\) and \(x\cdot x^{*}=1\)
So \(x\cdot x^{**}=\) \(x\cdot x^{*}=1\), then \(x^*\cdot (x\cdot x^{**})=x^*\cdot(x\cdot x^{*})\)
Then \(1\cdot x^{*}=1\cdot x^{**}\)
Notation
The unique opposite of \(x\) is denoted \(-x\)
The unique inverse of \(x(x\neq 0)\) is \(x^{-1}=\frac{1}{x}\)
Proposition
-
Let \(\mathbb{F}\) be a field, the following propositions hold:
-
\(-0=0,1^{-1}=1\)
-
Proof
\(0\left(x\right)+0\left(y\right)=0\Rightarrow y=-x\Rightarrow0=-0\) 2. Proof
\(1\left(x\right)\cdot1\left(y\right)=1\Rightarrow x=y^{-1}\Rightarrow1^{-1}=1\) 2. \(x\cdot 0=0,\forall x\in \mathbb{F}\)
Proof
\(x\cdot 0=x\cdot (0+0)=x\cdot 0+x\cdot 0\)
\(\tilde y+y=\tilde y+(y+y)\)
\(0=y=x\cdot 0\) 3. If \(x+y=x+z\Rightarrow y=z\)
\(-x+(x+y)=-x+(x+z)\Rightarrow0+y=0+z\Rightarrow y=z\) 4. For every \(x,y\in \mathbb{F}\), \(\exists !z\in \mathbb{F}\) such that \(x+z=y\)
Proof
-
Uniqueness
Suppose exists \(z_1,z_2\) such that \(x+z_1=y,x+z_2=y\)
Thus \(x+z_1=x+z_2\), then \((-x)+x+z_1=(-x)+x+z_2\Rightarrow z_1=z_2\) 2. ==Existence==
Let \(z=y-x\), then \(x+z=x+y-x=y\) 5. If \(x\cdot y=x\cdot z,x\neq 0\Rightarrow y=z\)
Proof
Since \(x\neq 0\) and \(x\cdot y=x\cdot z\), then \(x^{-1}\cdot x\cdot y=x^{-1}\cdot x\cdot z\Rightarrow1\cdot y=1\cdot z\Rightarrow y=z\) 6. For every \(x,y\in \mathbb{F},x\neq 0,\exists!z\in \mathbb{F}\) such that \(x\cdot z=y\)
-
Existence
Since we are in the field, then there exists \(x\cdot x^{-1}=1\)
Thus let \(z=\frac{y}{x}\) and \(x\cdot z=x\cdot\frac{y}{x}=y\) 2. Uniqueness
Suppose exists \(z_1,z_2\), then \(x\cdot z_1=y=x\cdot z_2\)
\(x^{-1}\cdot x\cdot z_1=x^{-1}\cdot x\cdot z_2\Rightarrow\left(x^{-1}\cdot x\right)\cdot z_1=\left(x^{-1}\cdot x\right)\cdot z_2\Rightarrow z_1=z_2\)
-
-
-
Let \(\mathbb{F}\) be a field, the following propositions hold:
-
\(-(-x)=x\)
Proof
\(-x+x=0\Rightarrow -(-x)=x\) 2. \(-1\cdot x=-x\)
\(-1\cdot x+x=x\cdot (-1+1)=x\cdot 0=0\)
Then \(-1\cdot x\) is the additive inverse of \(x\).
Thus \(-1\cdot x=-x\) 3. \(-(x+y)=-x+(-y)\)
Proof
\(-(x+y)=-1\cdot (x+y)=-1\cdot x+(-1)\cdot y=-x+(-y)\) 4. \(-(x\cdot y)=(-x)\cdot y=x\cdot (-y)\)
Proof
\(-(x\cdot y)=(-1)\cdot x \cdot y=(-x)\cdot y=x\cdot (-y)\) 5. \((-x)(-y)=xy\)
Proof
\((-x)(-y)=(-1)\cdot x\cdot (-1)\cdot y=-(-1)\cdot x\cdot y=1\cdot x\cdot y=x\cdot y\) 6. \(\left(x^{-1}\right)^{-1}=x\left(x\neq0\right)\)
Proof
Since \(x\cdot x^{-1}=1\), then \(x=\left(x^{-1}\right)^{-1}\) 7. \((xy)^{-1}=x^{-1}\cdot y^{-1}(x,y\neq 0)\)
Since \(x\cdot x^{-1}=1\) and \(y\cdot y^{-1}=1\), then \(x\cdot x^{-1}\cdot y\cdot y^{-1}=1\Rightarrow\left(x\cdot y\right)\cdot\left(x^{-1}\cdot y^{-1}\right)=1\Rightarrow\left(xy\right)^{-1}\left(xy\right)\left(x^{-1}\cdot y^{-1}\right)=\left(xy\right)^{-1}\Rightarrow1\cdot\left(x^{-1}\cdot y^{-1}\right)=\left(xy\right)^{-1}\Rightarrow x^{-1}\cdot y^{-1}=\left(xy\right)^{-1}\) 8. \(\left(-1\right)^{-1}=-1\)
Since we know \((-1)\cdot (-1)=1\), then \(-1\) is the inverse of \((-1)\)
Thus \(\left(-1\right)^{-1}=-1\) 9. \((-x)^{-1}=-x^{-1}\left(x\neq0\right)\)
Since 8, then \((-x)^{-1}=(-1)^{-1}\cdot x^{-1}\) and by 7 we have \((-1)^{-1}\cdot x^{-1}=-1\cdot x^{-1}=-x^{-1}\)
-
-
Let \(\mathbb{F}\) be a field and \(x,y\in\mathbb{F}\). Then \(x\cdot y=0\Leftrightarrow x=0\) or \(y=0\)
\(\Rightarrow\))
If \(x=0\), we have proved it
If \(x\neq 0\)
Since \(x\cdot y=0\), ==then== \(x^{-1}\cdot x\cdot y=0\cdot x^{-1}\Rightarrow1\cdot y=0\Rightarrow y=0\)
\(x\) is similar
\(\Leftarrow\))
Since \(x=0\), then \(x\cdot y=0\cdot y=0\)
\(y\) is similar
Equivalently, \(x,y\neq 0 \Leftrightarrow x\neq 0\) and \(y\neq 0\)
The complex field
\(\mathbb{C}=\left\lbrace a+bi:a,b\in\mathbb{R}\right\rbrace\) \(\mathbb{R^2}=\left\lbrace\left(a,b\right):a,b\in\mathbb{R}\right\rbrace\)
The \(+\) is defined coordinatewise
Notation
\(a=a+0i\), \(bi=0+bi\), \(i=0+1\cdot i\)
The product is defined by extending the product in \(\R\) and by defining \(i^2=-1\)
\((a+bi)(a'+b'i)=a\cdot a'+a\cdot (b'\cdot i)+(b\cdot i)\cdot a'+(bi)(b'\cdot i)=(aa'-bb')+(ab'+ba')i\)
If \(a+bi\neq 0=0+0i\), \((a+bi)^{-1}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i\)
Notation: \(a-b=a+(-b)\)