

Homework 9

1) (30pts) Suppose V is finite-dimensional and Γ is a subspace of V^* . Show that

 $\Gamma = \{ v \in V \colon \varphi(v) = 0 \text{ for every } \varphi \in \Gamma \}^0.$

2) (20pts) Suppose V and W are finite-dimensional. Let $T \in \mathcal{L}(V, W)$ and suppose there exists $\varphi \in V^*$ such that $\operatorname{Null}(T^*) = \langle \varphi \rangle$. Prove that $\operatorname{Range}(T) = \operatorname{Null}(\varphi)$.

3) (30pts) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by T(x, y) = (3x + 4y - z, x + y + z, -3x + 6y) and consider the bases of \mathbb{R}^3 given by $\mathcal{B} = \{(1, 1, 0), (0, 1, 1), (1, 0, 0)\}$ and $\mathcal{B}' = \{(1, -2, 1), (2, -3, 3), (-2, 2, -3)\}$

- (a) Find the matrix $[T]_{\mathcal{B}'}$ of T in the basis \mathcal{B}' .
- (b) Write $[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$ where P is an invertible matrix.

4) (20pts) Let V be finite dimensional, \mathcal{B} a basis of V and $A \in M_n(\mathbb{F})$ an invertible matrix. Prove that there exist bases \mathcal{B}_1 and \mathcal{B}_2 of V such that:

- (a) A is the change of basis matrix from \mathcal{B}_1 to \mathcal{B} .
- (b) A is the change of basis matrix from \mathcal{B} to \mathcal{B}_2 .