

Homework 7

- 1) (30 pts) Consider the linear map given by $T: P_2(\mathbb{R}) \to P_1(\mathbb{R}), T(ax^2 + bx + c) = (a + b)x + 2c a.$
- (a) Let $\mathcal{C} = \{x, x^2, 1\}$ and $\mathcal{C}' = \{1, x\}$. Find the matrix of T with respect to \mathcal{C} and \mathcal{C}' .
- (b) Let $\mathcal{B} = \{x^2 + 1, x^2 + x + 1, x^2\}$ and $\mathcal{B}' = \{1, x 2\}$. Find the matrix of T with respect to \mathcal{B} and \mathcal{B}' .
- (c) Give a basis for Null(T) and Range(T).
- 2) (30pts) Let $T: V \to W$ be a linear map. Prove the following:
- (a) If T(v) = 0 for all $v \in V$, then for any bases \mathcal{B}_V and \mathcal{B}_W of V and W respectively, the matrix of T with respect to \mathcal{B}_V and \mathcal{B}_W is the zero matrix.
- (b) If Null(T) is non-trivial then there exists a basis \mathcal{B}_V of V such that for any basis \mathcal{B}_W of W the matrix of T with respect to \mathcal{B}_V and \mathcal{B}_W has at least one zero column. Moreover, one can take \mathcal{B}_V in such a way to have dim(Null(T)) zero columns.
- (c) There exist bases \mathcal{B}_V and \mathcal{B}_W of V and W respectively such that the matrix of T with respect to \mathcal{B}_V and \mathcal{B}_W is $\begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix}$ where I_m is the $m \times m$ identity matrix and $m = \dim(\operatorname{Range}(T))$.

3) (20pts) Suppose V is finite-dimensional and $S, T, U \in \mathcal{L}(V, V)$ and STU = I. Show that T is invertible and that $T^{-1} = US$.

4) (20pts) Prove that every linear map from $M_{n\times 1}(\mathbb{F})$ to $M_{m\times 1}(\mathbb{F})$ is given by a matrix multiplication. In other words, prove that if $T \in \mathcal{L}(M_{n\times 1}(\mathbb{F}), M_{m\times 1}(\mathbb{F}))$, then there exists an $m \times n$ matrix A such that T(x) = Ax for every $x \in M_{n\times 1}(\mathbb{F})$.