

Homework 4

1) (20 pts) Let
$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 0 & 3 \\ 1 & -1 & 1 & 2 \end{pmatrix}$$
. Determine for which values of a , the system $Ax = \begin{pmatrix} a \\ 1 \\ 0 \\ 1 \end{pmatrix}$ has a solution. For these values of a , find all possible solutions.

2) (20 pts) Describe explicitly all 3×3 row-reduced echelon matrices.

3) (30 pts) Consider the system of equations Ax = 0 where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

is a 2×2 matrix over a field \mathbb{F} . Prove the following:

- (a) If every entry of A is 0, then every (x_1, x_2) is a solution of Ax = 0.
- (b) If $ad bc \neq 0$, the system Ax = 0 has only the trivial solution $(x_1, x_2) = (0, 0)$.
- (c) If ad bc = 0 and some entry of A is not 0, then there exists a solution (x_1^0, x_2^0) of the system Ax = 0 such that (x_1, x_2) is a solution of Ax = 0 if and only if $(x_1, x_2) = (\lambda x_1^0, \lambda x_2^0)$ for some scalar $\lambda \in \mathbb{F}$.

4) (30 pts) Use elementary row operations to discover whether the following matrices are invertible or not. If so, give the inverse explicitly.

(a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$
 where the coefficients of A are in \mathbb{Z}_5 .

(b)
$$B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 6 \\ 5 & 0 & 2 \end{pmatrix}$$
 where the coefficients of B are in \mathbb{Z}_7 .