

Homework 3

- 1) (15 pts) Are the following subsets S of the vector space V subspaces?
- (a) $S = \{ax^3 + bx^2 + cx + d \in V : a + b + c + d = 0\}$ where $V = \{p \in \mathbb{R}[x] : \deg(p) \le 3\}$.
- (b) $S = \{A \in M_2(\mathbb{R}) : \det(A) = 0\}$ where $V = M_2(\mathbb{R})$.
- (c) $S = \{A \in \mathcal{M}_n(\mathbb{R}) \colon A^T = A\}$ where $V = \mathcal{M}_n(\mathbb{R})$.

2) (20 pts) Prove or give a counterexample: if U_1 , U_2 and W are subspaces of V such that

$$V = U_1 \oplus W$$
 and $V = U_2 \oplus W$,

then $U_1 = U_2$.

3) (30 pts) Let S_1 and S_2 be subsets of a vector space V and denote the subspaces spanned by S_1 and S_2 as $\text{Span}(S_1)$ and $\text{Span}(S_2)$ respectively. Prove that $\text{Span}(S_1 \cup S_2) = \text{Span}(S_1) + \text{Span}(S_2)$.

- 4) (35 pts) Homogeneous system of linear equations.
- (a) Let W_A be the set of all solutions $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ of the homogeneous system of linear equations Ax = 0 where $A \in M_3(\mathbb{R})$ is given by

$$A = \begin{pmatrix} -1 & 1 & 1\\ 3 & -1 & 0\\ 2 & -4 & -5. \end{pmatrix}$$

Find a finite set of vectors in \mathbb{R}^3 which spans W_A .

(b) Let W_B be the set of all solutions $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ of the homogeneous system of linear equations Bx = 0 where $B \in M_3(\mathbb{R})$ is given by

$$A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3. \end{pmatrix}$$

Find a finite set of vectors in \mathbb{R}^3 which spans W_B .