

Homework 12

1) (30pts) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by T(x, y, z, w) = (4x + 7z + w, 7x + 2y + 11z + 3w, x + 2z + w, -4x - 8z - w). Find a basis \mathcal{B} of \mathbb{R}^3 such that $[T]_{\mathcal{B}}$ is upper triangular.

- 2) (30pts) Decide whether or not the following linear maps $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ are diagonalizable and if so, find a matrix P such that $P^{-1}[T]_{\mathcal{C}}P$ is a diagonal matrix.
- (a) T(x, y, z) = (-x 2y + 2z, 4x + 3y 4z, -2y + z).
- (b) T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (c) T(x, y, z, w, v) = (3x + 2y + 4z, 2x + 2z, 4x + 2y + 3z, 3u + v, 2u + 2v).
- 3) (20pts) Let $A \in M_n(\mathbb{F})$.
- (a) Suppose A is *nilpotent*, that is, there exists some $m \in \mathbb{N}$ such that $A^m = 0$. Prove that 0 is the only eigenvalue of A.
- (b) Suppose $A \neq 0$ is *idempotent*, that is, $A^2 = A$. Prove that 0 and 1 are the only eigenvalues of A.

4) (20pts) Suppose $T \in \mathcal{L}(\mathbb{C}^3, \mathbb{C}^3)$ is such that 6 and 7 are eigenvalues of T. Furthermore, suppose $[T]_{\mathcal{B}}$ is not a diagonal matrix with respect to any basis \mathcal{B} of \mathbb{C}^3 . Prove that there exists $(x, y, z) \in \mathbb{C}^3$ such that $T(x, y, z) = (17 + 8x, \sqrt{5} + 8y, 2\pi + 8z)$.