

Homework 11

1) (20pts) Prove or give a counterexample: if V is finite-dimensional and U is a subspace of V that is invariant under every $T \in \mathcal{L}(V, V)$, then $U = \{0\}$ or U = V.

- 2) (20pts) Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be defined by $T(x_1, x_2, \dots, x_n) = (x_1, 2x_2, \dots, nx_n)$.
- (a) Find all eigenvalues and the associated eigenvector spaces of T.
- (b) Find all invariant subspaces of T.

3) (20pts) Suppose $V = U \oplus W$, where U and W are non-zero subspaces of V. Define $P \in \mathcal{L}(V, V)$ by P(u+w) = u for $u \in U$ and $w \in W$. Find all eigenvalues and eigenvectors of P.

4) (20pts) Suppose $T \in \mathcal{L}(V, V)$ and dim (Range(T)) = k. Prove that T has at most k+1 distinct eigenvalues.

5) (20pts) Suppose $A \in M_n(\mathbb{F})$ and define $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^n)$ by T(v) = Av, where the elements of \mathbb{F}^n are thought of as $n \times 1$ column vectors.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigenvalue of T.
- (b) Suppose the sum of the entries in each column of A equals 1. Prove that 1 is an eigenvalue of T.