

Homework 1

- 1) (20 pts) Let \mathbb{F} be a field. Prove the following properties:
- (a) If a.b = 0 for $a, b \in \mathbb{F}$, then a = 0 or b = 0.
- (b) The additive identity 0 is unique.
- (c) If (-a).(-b) = a.b for every $a, b \in \mathbb{F}$.

2) (34 pts) Define addition \oplus and multiplication \otimes on \mathbb{R} as follows:

 $a \oplus b = a + b + 4$ $a \otimes b = 2ab$

Check whether or not \mathbb{R} with the addition \oplus and the multiplication \otimes satisfies each of the field axioms.

3) (30 pts) Let
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & 3 \\ 5 & 8 \end{pmatrix}$. Find a matrix D such that $CD - AB = 0$.

- 4) (16 pts) Consider the fields \mathbb{Z}_7 and \mathbb{Z}_{17} .
- (a) Find $3.6 + (4^{-1}) + 2.(-3) + 5$ in \mathbb{Z}_7 .
- (b) Find $3.6 + (4^{-1}) + 2.(-3) + 5$ in \mathbb{Z}_{17} .