4
-
(20 pts) Let \(A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 0 & 3 \\ 1 & -1 & 1 & 2 \end{pmatrix}\). Determine for which values of \(a\), the system \(Ax = \begin{pmatrix} a \\ 1 \\ 0 \\ 1 \end{pmatrix}\) has a solution. For these values of \(a\), find all possible solutions.
\(\begin{pmatrix}\begin{array}{cccc|c}1 & 1 & -1 & 2 & a\\ 2 & 1 & 1 & 1 & 1\\ 3 & 2 & 0 & 3 & 0\\ 1 & -1 & 1 & 2 & 1\end{array}\end{pmatrix}\rightarrow R_1-R_4,R_2-2R_4,R_3-3R_4:\begin{pmatrix}\begin{array}{cccc|c}0 & 2 & -2 & 0 & a-1\\ 0 & 3 & -1 & -3 & -1\\ 0 & 5 & -3 & -3 & -3\\ 1 & -1 & 1 & 2 & 1\end{array}\end{pmatrix}\\\rightarrow R_1\leftrightarrow R_4,R_2\leftrightarrow R_3:\begin{pmatrix}\begin{array}{cccc|c}1 & -1 & 1 & 2 & 1\\ 0 & 5 & -3 & -3 & -3\\ 0 & 3 & -1 & -3 & -1\\ 0 & 2 & -2 & 0 & a-1\end{array}\end{pmatrix}\rightarrow R_2-R_3:\begin{pmatrix}\begin{array}{cccc|c}1 & -1 & 1 & 2 & 1\\ 0 & 2 & -2 & 0 & -2\\ 0 & 3 & -1 & -3 & -1\\ 0 & 2 & -2 & 0 & a-1\end{array}\end{pmatrix}\)
Then we can observe that \(R_2\) is same with \(R_4\), then we can let \(R_4-R_2\) then we get a zero row.
\(\begin{pmatrix}\begin{array}{cccc|c}1 & -1 & 1 & 2 & 1\\ 0 & 2 & -2 & 0 & -2\\ 0 & 3 & -1 & -3 & -1\\ 0 & 0 & 0 & 0 & a+1\end{array}\end{pmatrix}\)
By theorem, if the system has a solution, then \(a+1=0\Rightarrow a=-1\)
\(\rightarrow\frac12R_2:\begin{pmatrix}\begin{array}{cccc|c}1 & -1 & 1 & 2 & 1\\ 0 & 1 & -1 & 0 & -1\\ 0 & 3 & -1 & -3 & -1\\ 0 & 0 & 0 & 0 & 0\end{array}\end{pmatrix}\rightarrow R_1+R_2:\begin{pmatrix}\begin{array}{cccc|c}1 & 0 & 0 & 2 & 0\\ 0 & 1 & -1 & 0 & -1\\ 0 & 3 & -1 & -3 & -1\\ 0 & 0 & 0 & 0 & 0\end{array}\end{pmatrix}\)
\(\rightarrow R_3-3R_2:\begin{pmatrix}\begin{array}{cccc|c}1 & 0 & 0 & 2 & 0\\ 0 & 1 & -1 & 0 & -1\\ 0 & 0 & 2 & -3 & 2\\ 0 & 0 & 0 & 0 & 0\end{array}\end{pmatrix}\rightarrow R_2+R_3,\frac12R_3:\begin{pmatrix}\begin{array}{cccc|c}1 & 0 & 0 & 2 & 0\\ 0 & 1 & 1 & -3 & -1\\ 0 & 0 & 1 & -\frac32 & 1\\ 0 & 0 & 0 & 0 & 0\end{array}\end{pmatrix}\)
Finally, let \(R_2-R_3:\begin{pmatrix}\begin{array}{cccc|c}1 & 0 & 0 & 2 & 0\\ 0 & 1 & 0 & -\frac32 & 0\\ 0 & 0 & 1 & -\frac32 & 1\\ 0 & 0 & 0 & 0 & 0\end{array}\end{pmatrix}\)
\(\begin{cases}x_1+2x_4=0\\ x_2-\frac32x_4=0\\ x_3-\frac32x_4=1\\ x_4\end{cases}\Rightarrow\begin{cases}x_1=-2x_4\\ x_2=\frac32x_4\\ x_3=1+\frac32x_4\\ x_4\end{cases}\)
Thus when \(x_4=0,x_1=0,x_2=0,x_3=1\)
Thus the solutions are \(\left\lbrace\left(-2a,\frac32a,1+\frac32a,a\right):a\in\mathbb{R}\right\rbrace\)
-
(20 pts) Describe explicitly all \(3 \times 3\) row-reduced echelon matrices.
\(\begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & a\\ 0 & 1 & b\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}1 & a & 0\\ 0 & 0 & 1\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}1 & a & b\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}0 & 1 & a\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\)
\(a,b\in \mathbb{F}\)
-
(30 pts) Consider the system of equations \(Ax = 0\) where \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\), is a \(2 \times 2\) matrix over a field \(\mathbb{F}\). Prove the following:
-
If every entry of \(A\) is \(0\), then every \((x_1, x_2)\) is a solution of \(Ax = 0\).
Let \(Ax=0\Rightarrow\begin{pmatrix}0 & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}x_1\\ x_2\end{pmatrix}=0\)
Then we have \(\begin{cases}0x_1+0x_2=0\\ 0x_1+0x_2=0\end{cases}\Rightarrow x_1,x_2\) can be any numbers in the field \(\mathbb{F}\) 2. If \(ad - bc \neq 0\), the system \(Ax = 0\) has only the trivial solution \((x_1, x_2) = (0, 0)\).
Solution 1: Define \(A^{-1}\) in the following way: \(A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -a \\ -b & c \end{pmatrix}\)
Notice that \(A \cdot A^{-1} = I\) therefore, if \(AX = 0\) then \(AA^{-1}X = 0\), i.e. \(IX = X = 0\) 3. If \(ad - bc = 0\) and some entry of \(A\) is not \(0\), then there exists a solution \((x_1^0, x_2^0)\) of the system \(Ax = 0\) such that \((x_1, x_2)\) is a solution of \(Ax = 0\) if and only if \((x_1, x_2) = (\lambda x_1^0, \lambda x_2^0)\) for some scalar \(\lambda \in \mathbb{F}\).
Solution:
Suppose that \(a\) is the nonzero entry. Since \(ad - bc = 0\) we know that \(ad = bc\). Thus we can perform the following reduction of \(A\):
\(\begin{pmatrix}a & b\\ c & d\end{pmatrix}\xrightarrow{\frac{1}{a}I}\begin{pmatrix}1 & \frac{b}{a}\\ c & d\end{pmatrix}\xrightarrow{-cI+II}\begin{pmatrix}1 & \frac{b}{a}\\ 0 & 0\end{pmatrix}\)
Thus \(AX = 0\) if and only if \(x_1 = -\frac{b}{a}x_2\), letting \(x_1^0 = -\frac{b}{a}\) and \(x_2^0 = 1\) we obtain what we want. An analogous argument can be given if we assume any other of the entries to be different from 0.
-
-
(30 pts) Use elementary row operations to discover whether the following matrices are invertible or not. If so, give the inverse explicitly.
-
\(A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix}\) where the coefficients of \(A\) are in \(\mathbb{Z}_5\).
Since we are in the field, thus we can calculate the inverse, then take the modular in the end.
\(\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 2 & 4 & 0 & 1 & 0\\ 0 & 0 & 3 & 0 & 0 & 1\end{array}\end{pmatrix}\rightarrow R_1-2R_2,\frac12R_2,\frac13R_3:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 0 & -4 & 1 & -1 & 0\\ 0 & 1 & 2 & 0 & \frac12 & 0\\ 0 & 0 & 1 & 0 & 0 & \frac13\end{array}\end{pmatrix}\\\rightarrow R_1+4R_3,R_2-2R_3:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & -1 & \frac43\\ 0 & 1 & 0 & 0 & \frac12 & -\frac23\\ 0 & 0 & 1 & 0 & 0 & \frac13\end{array}\end{pmatrix}\)
Thus \(A^{-1}=\begin{pmatrix}1 & -1 & \frac43\\ 0 & \frac12 & -\frac23\\ 0 & 0 & \frac13\end{pmatrix}=\begin{pmatrix}1 & 4 & 4\cdot2\\ 0 & 1\cdot3 & -2\cdot2\\ 0 & 0 & 1\cdot2\end{pmatrix}=\begin{pmatrix}1 & 4 & 8\\ 0 & 3 & -4\\ 0 & 0 & 2\end{pmatrix}=\begin{pmatrix}1 & 4 & 3\\ 0 & 3 & 1\\ 0 & 0 & 2\end{pmatrix}\)
Since \(2\cdot3\equiv1(\mod5)\), thus the inverse of \(3\) is \(2\). 2. \(B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 6 \\ 5 & 0 & 2 \end{pmatrix}\) where the coefficients of \(B\) are in \(\mathbb{Z}_7\).
Since we are in the field, thus we can calculate the inverse, then take the modular in the end.
\(\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 3 & 6 & 0 & 1 & 0\\ 5 & 0 & 2 & 0 & 0 & 1\end{array}\end{pmatrix}\rightarrow\frac13R_2:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 1 & 2 & 0 & \frac13 & 0\\ 5 & 0 & 2 & 0 & 0 & 1\end{array}\end{pmatrix}\\\rightarrow R_3-5R_1:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 1 & 2 & 0 & \frac13 & 0\\ 0 & -10 & 2 & -5 & 0 & 1\end{array}\end{pmatrix}\rightarrow R_2-R_3\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 11 & 0 & 5 & \frac13 & -1\\ 0 & -10 & 2 & -5 & 0 & 1\end{array}\end{pmatrix}\)
\(\rightarrow\frac{R_2}{11},\frac{R_3}{2}:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & \frac{5}{11} & \frac{1}{33} & -\frac{1}{11}\\ 0 & -5 & 1 & -\frac52 & 0 & \frac12\end{array}\end{pmatrix}\rightarrow R_1-2R_2:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{11} & -\frac{2}{33} & \frac{2}{11}\\ 0 & 1 & 0 & \frac{5}{11} & \frac{1}{33} & -\frac{1}{11}\\ 0 & -5 & 1 & -\frac52 & 0 & \frac12\end{array}\end{pmatrix}\\\rightarrow R_3+5R_2:\begin{pmatrix}\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{11} & -\frac{2}{33} & \frac{2}{11}\\ 0 & 1 & 0 & \frac{5}{11} & \frac{1}{33} & -\frac{1}{11}\\ 0 & 0 & 1 & -\frac{5}{22} & \frac{5}{33} & \frac{1}{22}\end{array}\end{pmatrix}\)
Thus \(B^{-1}=\begin{pmatrix}\frac{1}{11} & -\frac{2}{33} & \frac{2}{11}\\ \frac{5}{11} & \frac{1}{33} & -\frac{1}{11}\\ -\frac{5}{22} & \frac{5}{33} & \frac{1}{22}\end{pmatrix}=\begin{pmatrix}2 & -\frac43 & 4\\ 10 & \frac23 & -2\\ -5 & \frac{10}{3} & 1\end{pmatrix}=\begin{pmatrix}2 & -20 & 4\\ 10 & 10 & -2\\ -5 & 50 & 1\end{pmatrix}=\begin{pmatrix}2 & 1 & 4\\ 3 & 3 & 5\\ 2 & 1 & 1\end{pmatrix}\)
Since \(11\cdot2\equiv1(\mod7)\), thus the inverse of \(11\) is \(2\).
Since \(3\cdot5\equiv1(\mod7)\), thus the inverse of \(3\) is \(5\).
-