Skip to content

2

Homework 2.pdf

Algebra A - Winter 2024

Homework 2

90

  1. (40 pts) Check whether the following sets \(V\) with the defined operations are vector spaces over \(F\) or not.
    If they are vector spaces, prove the properties. If not, what property fails?

    (a) The set \(V = \{f : \mathbb{R} \rightarrow \mathbb{R} : f \text{ is an even function} \}\) and \(F = \mathbb{R}\) with the addition \((f + g)(x) = f(x) + g(x)\) and the scalar multiplication \((af)(x) = af(x)\).

    (Remember that an even function is a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) which satisfies \(f(t) = f(-t)\) for all \(t \in \mathbb{R}\)).

    Proof

    Let's check the property

    First, we need to check the sum and scalar is still in the vector space

    \((f+g)(x)=f(x)+g(x)=f(-x)+g(-x)=(f+g)(-x)\) \(\checkmark\)

    \((af)(x)=af(x)=af(-x)=(af)(-x)\) \(\checkmark\)

    1. The sum of associativity and commutativity \(\checkmark\)

      \(\left(f+\left(g+h\right)\right)(x)=f(x)+\left(g+h\right)(x)=f\left(x\right)+g\left(x\right)+h\left(x\right)\)

      \(\left(\left(f+g)+h\right)\right)(x)=\left(f+g)(x)+h(x\right)=f\left(x\right)+g\left(x\right)+h\left(x\right)\)

      Thus \(\left(f+\left(g+h\right)\right)(x)=\left(\left(f+g\right)+h\right)(x)\)

      \((f + g)(x) = f(x) + g(x)\), \((g + f)(x) = g(x) + f(x)=f(x)+g(x)\)

      Thus \((f+g)(x)=(g+f)(x)\)​ 2. Neutral element \(\checkmark\)

      Let \(g(x)=0,\forall x\in R\)

      \((f+g)(x)=f(x)+g(x)=f(x)\)​ 3. For every \(v\in V,\exists w\in V\) such that \(v+w=0\) \(\checkmark\)

      \(\forall f(x)\in V,\exists g(x)\in V,\left(f+g\right)\left(x\right)=f(x)+g(x)=0\). Then \(g(x)=-f(x)\)​ 4. \(1\cdot v=v,\forall v\in V\) \(\checkmark\)

      Since \(1\in \R\), then \(\forall f(x)\in V,\left(1\cdot f\right)(x)=1\cdot f(x)=f\left(x\right)\)​ 5. \(\lambda\cdot(v+w)=\lambda\cdot v+\lambda\cdot w,\forall\lambda\in\mathbb{F},\forall v,w\in V\) \(\checkmark\)

      \(\left(\lambda\left(f+g)\right)(x\right)=\lambda(f+g)(x)=\lambda\left(f(x)+g(x)\right)=\lambda f(x)+\lambda g(x)=\left(\lambda f\right)(x)+\left(\lambda g\right)(x)\)​ 6. \(\left(\lambda+\mu\right)\cdot v=\lambda\cdot v+\mu\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\) \(\checkmark\)

      \(\left(\left(\lambda+\mu\right)\cdot f\right)\left(x\right)=\left(\lambda+\mu\right)\cdot f\left(x\right)=\lambda\cdot f\left(x\right)+\mu\cdot f\left(x\right)\) 7. \(\lambda\cdot\left(\mu\cdot v\right)=\left(\lambda\cdot\mu\right)\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\) \(\checkmark\)

      \(\left(\lambda\cdot\left(\mu\cdot f)\left(x\right)\right)=\lambda\cdot\left(\mu\cdot f\right)\left(x\right)=\lambda\cdot\left(\mu\cdot f\left(x\right)\right)=\left(\lambda\cdot\mu\right)\right.\cdot f\left(x\right)=\left(\left(\lambda\cdot\mu\right)\cdot f\right)\left(x\right)\)

    Thus it is a vector space

    (b) The set $ \(​\)V={A\in M_n(\R):A\text{ is invertible}}$​ and \(F = \mathbb{R}\) with the natural addition \(A+B\) of matrices and the natural scalar multiplication \(c \cdot A\) (i.e., coordinate by coordinate).

    Proof

    Let's check the property

    First, we need to check the sum and scalar is still in the vector space

    Let \(A,B\in M_{n}(\mathbb{R})\text{ and are invertible}\)

    But \(A+B\) may equal to \(0\) when \(A=-B\) No!

    Also, let \(a\in\R\), then \(a\cdot A\) may equal to \(0\) when \(a=0\) No!

    Thus it is not vector space since \(+:V\times V\rightarrow V\) and \(\cdot :\) \(\mathbb{F}\times V\rightarrow V\) is not satisfied

    (c) Let \(V = \mathbb{R} \cup \{-\infty\} \cup \{\infty\}\) and \(F = \mathbb{R}\). We consider the addition and multiplication of two real numbers as usual and for \(x \in \mathbb{R}\) we define:

    \(x + \infty = \infty + x = \infty, x + (-\infty) = (-\infty) + x = -\infty,\)

    \(\infty + \infty = \infty, -\infty + (-\infty) = -\infty, \infty + (-\infty) = 0,\)

    and \(x \cdot \infty = \begin{cases} -\infty & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ \infty & \text{if } x > 0, \end{cases}\) \(x \cdot (-\infty) = \begin{cases} \infty & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ -\infty & \text{if } x > 0. \end{cases}\)

    Proof

    Let's check the property

    First, we need to check the sum and scalar is still in the vector space

    Since we know \(\R\) is a vector space over \(\R\), then we only need to check when we choose \(-\infty~and~\infty\) in vector space

    For sum, for \(x\in \R\),

    \(x + \infty = \infty + x = \infty, x + (-\infty) = (-\infty) + x = -\infty,\)

    \(\infty + \infty = \infty, -\infty + (-\infty) = -\infty, \infty + (-\infty) = 0,\)

    Thus it is still in vector space

    Then since \(x \cdot \infty = \begin{cases} -\infty & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ \infty & \text{if } x > 0, \end{cases}\) \(x \cdot (-\infty) = \begin{cases} \infty & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ -\infty & \text{if } x > 0. \end{cases}\) is also in the vector space

    Thus the scalar is satisfied

    1. The sum of associativity and commutativity

      \(x + \infty = \infty + x = \infty, x + (-\infty) = (-\infty) + x = -\infty,\) \(\infty+\infty=\infty+\infty,-\infty+(-\infty)=-\infty+(-\infty),\infty+(-\infty)=(-\infty)+\infty,\)

      Then \(\left(\infty+\infty\right)+\infty=\infty+\infty+\infty=\infty+\left(\infty+\infty\right)=\infty\) and \(\left(-\infty+\left(-\infty\right)\right)+\left(-\infty\right)=-\infty+\left(-\infty\right)+\left(-\infty\right)=-\infty+\left(-\infty+\left(-\infty\right)\right)=-\infty\)

      \(\left(x+\infty)+\infty=x+\infty+\infty=x+\left(\infty\right.+\infty\right)=\infty\) and \(\left(x+(-\infty))+(-\infty)=x+(-\infty)+(-\infty)=x+\left(-\infty\right.+(-\infty)\right)=-\infty\)

      \(\left(x+\infty)+\left(-\infty\right)=x+\infty+\left(-\infty\right)=x+\left(\infty\right.+\left(-\infty\right)\right)\) but the left side is 0 and the right side is \(x\)

      Not equal! Thus assocaitivity is not satisfied. 2. Neutral element \(\checkmark\)

      \(x+0=x\) and \(\infty+0=\infty\) and \(-\infty+0=-\infty\)​ 3. For every \(v\in V,\exists w\in V\) such that \(v+w=0\) \(\checkmark\)

      \(x+(-x)=0\) and \(\infty+(-\infty)=0\)​ 4. \(1\cdot v=v,\forall v\in V\) \(\checkmark\)

      \(1\cdot x=x\) and \(1\cdot \infty=\infty\) and \(1\cdot (-\infty)=-\infty\)​ 5. \(\lambda\cdot(v+w)=\lambda\cdot v+\lambda\cdot w,\forall\lambda\in\mathbb{F},\forall v,w\in V\) \(\checkmark\)

      \(\lambda\cdot(x+\infty)=\lambda\cdot x+\lambda\cdot\infty=\infty\) and \(\lambda\cdot(x+(-\infty))=\lambda\cdot x+\lambda\cdot(-\infty)=-\infty\) and \(\lambda\cdot(\infty+\infty)=\lambda\cdot\infty+\lambda\cdot\infty=\infty\) and \(\lambda\cdot(-\infty+(-\infty))=\lambda\cdot(-\infty)+\lambda\cdot(-\infty)=-\infty\) and \(\lambda\cdot(\infty+(-\infty))=\lambda\cdot\infty+\lambda\cdot(-\infty)=0\)​ 6. \(\left(\lambda+\mu\right)\cdot v=\lambda\cdot v+\mu\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\)

      \((\lambda+\mu)\cdot\infty=\lambda\cdot\infty+\mu\cdot\infty=\infty\)

      But left side can be \(0\) when \(\lambda+\mu=0\), then the right side is still \(\infty\), then they are not equal 7. \(\lambda\cdot\left(\mu\cdot v\right)=\left(\lambda\cdot\mu\right)\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\) \(\checkmark\)

      \(\lambda\cdot\left(\mu\cdot\infty)=\lambda\cdot\mu\cdot\infty=\left(\lambda\cdot\mu\right)\right.\cdot\infty=\infty\) and \(\lambda\cdot\left(\mu\cdot\left(-\infty\right))=\lambda\cdot\mu\cdot\left(-\infty\right)=\left(\lambda\cdot\mu\right)\right.\cdot\left(-\infty\right)=-\infty\)

    Thus it is not a vector space since the associativity (a) and (f) distributivity are not satisfied

  2. (10 pts) Is \(\mathbb{R}\) a vector space over \(\mathbb{C}\)? Is \(\mathbb{C}\) a vector space over \(\mathbb{R}\)? Explain.

    First, Field is \(\mathbb{C}\) and vector space is \(\R\). We need to check \(+:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}\) and \(\cdot :\) \(\mathbb{C}\times\mathbb{R}\rightarrow\mathbb{R}\) first.

    \(+:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}\) is true

    But \(\cdot :\) \(\mathbb{C}\times\mathbb{R}\rightarrow\mathbb{R}\) can not hold since complex number \(\times\) real number may be complex number, such as \(-i\times 1=-i\)

    Thus \(\mathbb{R}\) is not a vector space over \(\mathbb{C}\)

    Then we check another one (Field is \(\mathbb{R}\) and vector space is \(\mathbb{C}\).) We need to check \(+:\mathbb{C}\times\mathbb{C}\rightarrow\mathbb{C}\) and \(\cdot :\) \(\mathbb{R}\times\mathbb{C}\rightarrow\mathbb{C}\) first.

    \(+:\mathbb{C}\times\mathbb{C}\rightarrow\mathbb{C}\) is true and \(\cdot :\) \(\mathbb{R}\times\mathbb{C}\rightarrow\mathbb{C}\) is also true \(\checkmark\)

    Then we check the property of vector space

    1. The sum of associativity and commutativity \(\checkmark\)

      This is true because the property of complex number 2. Neutral element \(\checkmark\)

      Yes, it is \(0\) and \(0\in \mathbb{C}\)​ 3. For every \(v\in V,\exists w\in V\) such that \(v+w=0\) \(\checkmark\)

      Yes, there exists additive inverse in \(\mathbb{C}\) and just let \(v=-w\)​ 4. \(1\cdot v=v,\forall v\in V\) \(\checkmark\)

      Yes, \(1\) is in the complex number and satisfies \(1\cdot v=v\)​ 5. \(\lambda\cdot(v+w)=\lambda\cdot v+\lambda\cdot w,\forall\lambda\in\mathbb{F},\forall v,w\in V\) \(\checkmark\)

      Yes, since the fundamental property of complex number 6. \(\left(\lambda+\mu\right)\cdot v=\lambda\cdot v+\mu\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\)

      Yes, since the fundamental property of complex number 7. \(\lambda\cdot\left(\mu\cdot v\right)=\left(\lambda\cdot\mu\right)\cdot v,\forall\lambda,\mu\in\mathbb{F},\forall v\in V\) \(\checkmark\)

      Yes, since the fundamental property of complex number

    Thus \(\mathbb{C}\) is a vector space over \(\mathbb{R}\)

  3. (30 pts) Consider the real vector space \(M_2(\mathbb{R})\) with the usual operations.

    (a) Is it possible to write the zero matrix \(0 \in M_2(\mathbb{R})\) in the form \(0 = a \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), with \(a, b, c \in \mathbb{R}\) not all zero?

    Let \(0=\begin{pmatrix}0 & 0\\ 0 & 0\end{pmatrix}=a\begin{pmatrix}1 & 0\\ -1 & 1\end{pmatrix}+b\begin{pmatrix}1 & 1\\ 2 & 1\end{pmatrix}+c\begin{pmatrix}0 & 1\\ 1 & 0\end{pmatrix}\)

    Then we have four equations \(\begin{cases}0=a+b\\ 0=b+c\\ 0=-a+2b+c\\ 0=a+b\end{cases}\Rightarrow\begin{cases}-a=b\\ -c=b\\ 0=2b\\ -a=b\end{cases}\Rightarrow\begin{cases}a=0\\ c=0\\ b=0\\ a=0\end{cases}\)

    Thus it is impossible.

    (b) Is it possible to write any matrix \(A \in M_2(\mathbb{R})\) uniquely in the form \(A = a \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), with \(a, b, c \in \mathbb{R}\)?

    Suppose we can write it in different ways, then we have

    \(A=\tilde{a}\begin{pmatrix}1 & 0\\ -1 & 1\end{pmatrix}+\tilde{b}\begin{pmatrix}1 & 1\\ 2 & 1\end{pmatrix}+\tilde{c}\begin{pmatrix}0 & 1\\ 1 & 0\end{pmatrix}\)

    Then we minus the original equation: \(0=\begin{pmatrix}0 & 0\\ 0 & 0\end{pmatrix}=\left(a-\tilde{a}\right)\begin{pmatrix}1 & 0\\ -1 & 1\end{pmatrix}+\left(b-\tilde{b}\right)\begin{pmatrix}1 & 1\\ 2 & 1\end{pmatrix}+\left(c-\tilde{c}\right)\begin{pmatrix}0 & 1\\ 1 & 0\end{pmatrix}\)

    Since we have known the coefficients must be all zero, thus \(a=\tilde{a},b=\tilde{b},c=\tilde{c}\). Contradiction!

    Thus it is unique

    Now, we need to prove existence

    Let \(A=\begin{pmatrix}a_{11} & a_{12}\\ a_{21} & a_{22}\end{pmatrix}\), then\(\begin{cases}a_{11}=a+b\\ a_{12}=b+c\\ a_{21}=-a+2b+c\\ a_{22}=a+b\end{cases}\Rightarrow a_{11}=a_{22}\)

    However, if \(a_{11}\neq a_{22}\), we cannot express it.

    Thus it is impossible

  4. (20 pts) Consider the real vector space \(\mathbb{R}[x]\) with the usual operations. Is \(q(x) = 3x^3 - 2x^2 + 7x - 8\) a linear combination of \(r(x) = x^3 - 2x^2 - 5x - 3\) and \(s(x) = 3x^3 - 5x^2 - 4x - 9\)?

    Suppose it is, then we have \(q\left(x\right)=r\left(x\right)+s\left(x\right)\Rightarrow3x^3-2x^2+7x-8=\lambda\left(x^3-2x^2-5x-3\right)+\mu\left(3x^3-5x^2-4x-9\right)\)

    Then \(\begin{cases}3=\lambda+3\mu\\ -2=-2\lambda-5\mu\\ 7=-5\lambda-4\mu\\ -8=-3\lambda-9\mu\end{cases}\), but the first equation contradicts to the fourth equation.

    Because the first equation: \(3=\lambda+3\mu\Rightarrow9=3\lambda+9\mu\)

    The fourth equation: \(-8=-3\lambda-9\mu\)

    If we add them, we get \(9=-8\) which is a contradiction!

    Thus \(q(x)\) is not a linear combination of \(r(x)\) and \(s(x)\)