9.4
-
Evaluate \((\frac{1}{2}+\frac{1}{2}i)^{10}\)
Since \(z\)=0.5+0.5i,\(|z|=\sqrt{(0.5^2+0.5^2)}=\frac{\sqrt2}{2}\)
\(z=\frac{\sqrt2}{2}(cos\theta+isin\theta)\)
\(\frac{\sqrt2}{2}cos\theta=0.5\), \(cos\theta=\frac{1}{\sqrt2}\),then \(sin\theta=\frac{1}{\sqrt2}\)
Hence \(z=(\frac{\sqrt2}{2},\frac{\pi}{4})\)
\(z^{10}=((\frac{\sqrt2}{2})^{10},10\cdot \frac{\pi}{4})\)
\(=(\frac{1}{32},\frac{\pi}{2})\)
Therefore, \(z^{10}=\frac{1}{32}(cos\frac{\pi}{2}+isin\frac{\pi}{2})=\frac{1}{32}i\)
-
For every \(z\in C\) prove that \(|z|\leq |Re(z)|+|Im(z)|\leq\sqrt2|z|\)
Suppose \(z=(r,\theta)\), then \(Re(z)=rcos\theta\), \(Im(z)=rsin\theta\), \(|z|=r\)
Then \(|Re(z)|+|Im(z)|=r(cos\theta)+r(sin\theta)=r(\sqrt2sin(\theta+\frac{\pi}{4}))=\sqrt2r(sin(\theta+\frac{\pi}{4}))\leq \sqrt2r=\sqrt2|z|\)
Then we prove \(|z|\leq |Re(z)|+|Im(z)|\)
Let \(z=a+bi\), then we need to prove \(\sqrt{a^2+b^2}\leq |a|+|b|\)
Equivalently, we prove \(a^2+b^2\leq (a+b)^2=a^2+b^2+2|ab|\)
Since \(a,b\geq 0\), clearly, \(\sqrt{a^2+b^2}\leq |a|+|b|\)
Therefore \(|z|\leq |Re(z)|+|Im(z)|\leq\sqrt2|z|\)
-
Prove that the sum of the nth roots of unity is 0
Let \(w=cis(\frac{2\pi}{n})\) then the nth roots of unity are 1,w,\(w^2\),...,\(w^{n-1}\) with \(w\neq 1\)
Then the sum of the nth roots of unity are \(\frac{1(1-w^n)}{1-w}\), since \(w^n=1\)
Then the sum is 0
-
Prove \(cos(\frac{2\pi }{n})+cos(\frac{4\pi }{n})+...+cos(\frac{2\pi(n-1) }{n})=-1\)
For the angular variable (n\in N~fixed)
Then \(z_j=cos(\frac{2\pi j}{n})+isin(\frac{2\pi j}{n})\)
Hence \(z_1+z_2+...+z_n=cos(\frac{0\pi }{n})+cos(\frac{2\pi }{n})+cos(\frac{4\pi }{n})+...+cos(\frac{2\pi(n-1) }{n})+i[sin(\frac{0\pi }{n})+sin(\frac{2\pi }{n})+sin(\frac{4\pi }{n})+...+sin(\frac{2(n-1)\pi }{n})]\)
Therefore \(cos(\frac{0\pi }{n})+cos(\frac{2\pi }{n})+cos(\frac{4\pi }{n})+...+cos(\frac{2\pi(n-1) }{n})=0\)
Then \(cos(\frac{2\pi }{n})+cos(\frac{4\pi }{n})+...+cos(\frac{2\pi(n-1) }{n})=-1\)