Skip to content

8.30

Let \(x,y\in R\) and \(n\in N\). If \(x,y\geq 0\) prove that \(x^n=y^n\) if and only if \(x=y\)

1.\(y^n-x^n=(y-x)(y^{n-1}+y^{n-2}x+...+yx^{n-2}+x^{n-1})\)

2.use contradiction

Theorem (\(a,b\in R\)​)

  1. If \(a>0\) then \(a^{-1}>0\)

    Proof

    Suppose that \(a>0\) and \(a^{-1}<0\) then \(1=aa^{-1}<0\cdot a^{-1}=0\) Contradiction

  2. If \(0<a<b\) then \(a^{-1}>b^{-1}\)

    Proof

    Since \(0<a<b\) then \(b-a>0\) and by (1) we have that \(a^{-1}-b^{-1}=a^{-1}(b-a)b^{-1}>0\)

    and thus \(a^{-1}>b^{-1}\)

Let \(a,c\in R\)

  1. If \(c\geq 0\) then \(|a|\leq c\), if and only if, \(-c\leq a\leq c\)

    Proof

    \(\Rightarrow\)) Suppose that \(|a|\leq c\). If \(a\geq 0\) then \(a=|a|\leq c\) and thus \(-c\leq -a\leq a\), therefore \(-c\leq a\leq c\).

    If \(a<0\) then\(-a=|a|\leq c\), hence \(-c\leq a\leq |a|\leq c\), therefore \(-c\leq a\leq c\)

    \(\Leftarrow\)) Suppose that \(-c\leq a\leq c\) then \(-c\leq a\) and \(a\leq c\) hence \(-a\leq c\) and \(a\leq c\), therefore \(|a|\leq c\)

  2. If \(c\geq 0\) then \(|a|\geq c\), if and only if, \(a\leq-c ~or~a\geq c\)

    Proof

    \(\Rightarrow\)) Suppose that \(|a|\geq c\). If \(a\geq 0\) then \(a=|a|\geq c\). If \(a<0\) then \(-a=|a|\geq c\), hence \(a\leq -c\)

    \(\Leftarrow\)) Suppose that \(a\leq -c\) or \(a\geq c\). If \(a\leq -c\) then \(-a\geq c\geq 0\) and thus \(|a|=|-a|=-a\geq c\)

    If \(a\geq c\geq 0\) then \(|a|=a\geq c\)

If \(X\) and \(Y\) are finite sets then \(X\times Y\) is finite and \(|X\times Y|=|X||Y|\)

Proof

If \(x\in X\) note that \({x}\times Y=\{(x,y):y\in Y\}\) is a finite set since Y is finite and \(|\{x\}\times Y|=|Y|\)

Now, $\begin{aligned}X\cup Y=\bigcup_{i \in |X|} ({x_i} \times y)\end{aligned} $ , then \(X\cup Y\) is finite and \(|X\cup Y|=\sum_{i\in|X|}|\{x_i\}\times Y|=\sum_{i\in|X|}|Y|=|X||Y|\)

Prove that the set \(Z\) is denumerable

\(f(n)=\begin{cases}\frac{n}{2}&\text{ if }n\text{ is even}\\-\frac{n-1}{2}&\text{ if }n\text{ is odd}\end{cases}\)

\(f:Z\rightarrow N\) is bijective